scispace - formally typeset
Search or ask a question
Author

Sylvain Bonhommeau

Bio: Sylvain Bonhommeau is an academic researcher from IFREMER. The author has contributed to research in topics: Tuna & Population. The author has an hindex of 23, co-authored 74 publications receiving 2488 citations. Previous affiliations of Sylvain Bonhommeau include École nationale supérieure agronomique de Rennes & European University of Brittany.


Papers
More filters
Journal ArticleDOI
23 Dec 2011-Science
TL;DR: A threshold in prey abundance is identified below which seabirds experience consistently reduced and more variable productivity and provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Abstract: Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed “forage fish”) abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

575 citations

Journal ArticleDOI
TL;DR: It is shown that phytoplanktonic primary production, estimated from an ocean-colour satellite (SeaWiFS), is related to global fisheries catches at the scale of Large Marine Ecosystems, while accounting for temperature and ecological factors such as ecosystem size and type.
Abstract: Primary production must constrain the amount of fish and invertebrates available to expanding fisheries; however the degree of limitation has only been demonstrated at regional scales to date. Here we show that phytoplanktonic primary production, estimated from an ocean-colour satellite (SeaWiFS), is related to global fisheries catches at the scale of Large Marine Ecosystems, while accounting for temperature and ecological factors such as ecosystem size and type, species richness, animal body size, and the degree and nature of fisheries exploitation. Indeed we show that global fisheries catches since 1950 have been increasingly constrained by the amount of primary production. The primary production appropriated by current global fisheries is 17-112% higher than that appropriated by sustainable fisheries. Global primary production appears to be declining, in some part due to climate variability and change, with consequences for the near future fisheries catches.

375 citations

Journal ArticleDOI
TL;DR: It is argued that sea warming in the eel spawning area since the early 1980s has modified marine production and eventually affected the survival rate of European eels at early life stages.
Abstract: European eel decline is now widely observed and involves a large number of factors such as overfishing, pollution, habitat loss, dam construction, river obstruction, parasitism and environmental changes. In the present study, we analysed the influence of environmental conditions in the Sargasso Sea and Atlantic ocean circulation on European glass eel recruitment success. Over a recent 11-year period, we showed a strong positive correlation between an original index of glass eel recruitment and primary production in eel spawning area. Moreover, primary production was negatively correlated with temperature in the Sargasso Sea. Therefore, we used sea temperature as an inverse proxy of marine production. A close negative relationship has been found over the last four decades between long-term fluctuations in recruitment and in sea temperature. These findings were reinforced by the detection of a regime shift in sea temperature that preceded the start of the decline in glass eel recruitment in the early 1980s. By contrast, variations in integrative indices measuring ocean circulation, i.e.\ latitude and strength of the Gulf Stream, did not seem to explain variations in glass eel recruitment. Our results support the hypothesis of a strong bottom-up control of leptocephali survival and growth by primary production in the Sargasso Sea on short and long time-scales. We argue that sea warming in the eel spawning area since the early 1980s has modified marine production and eventually affected the survival rate of European eels at early life stages.

158 citations

Journal ArticleDOI
TL;DR: Evidence that the survival of eel larvae is strongly correlated to food availability during their early life stages is provided, suggesting that changes in the marine production related to global warming may have led to the decline of European, American and Japanese eel populations.
Abstract: Glass eel abundances are declining worldwide. This has mostly been attributed to direct impacts of human activities such as overfishing or habitat loss and degradation, whilst the potential influence of changes in oceanic conditions has received less attention. Eel are characterized by a complex and still enigmatic life cycle that includes a trans-oceanic spawning and larval migration. The apparent synchrony in the decline of eel populations worldwide suggests that the oceanic mechanisms involved are similar for all populations. We analyse the relationships between oceanic conditions in eel spawning areas and glass eel recruitment success of the 3 most commercially important species of the genus Anguilla: A. anguilla, A. rostrata, and A. japonica. We provide evidence that the survival of eel larvae is strongly correlated to food availability during their early life stages. Over the last 4 decades, changes in the marine production related to global warming may have led to the decline of European, American and Japanese eel populations. In the Pacific and Atlantic Oceans, the shifts in the temperature regime detected in the late 1970s were followed by shifts in the recruitment regime of glass eel for the 3 species. The decrease in primary production through climate-driven processes has therefore affected the recruitment of eel populations.

128 citations

Journal ArticleDOI
TL;DR: Satellite remote sensing (SRS) of the marine environment has become instrumental in ecology for environmental monitoring and impact assessment, and it is a promising tool for conservation issues.
Abstract: Satellite remote sensing (SRS) of the marine environment has become instrumental in ecology for environmental monitoring and impact assessment, and it is a promising tool for conservation issues. In the context of an ecosystem approach to fisheries management (EAFM), global, daily, systematic, high-resolution images obtained from satellites provide a good data source for incorporating habitat considerations into marine fish population dynamics. An overview of the most common SRS datasets available to fishery scientists and state-of-the-art data-processing methods is presented, focusing on recently developed techniques for detecting mesoscale features such as eddies, fronts, filaments, and river plumes of major importance in productivity enhancement and associated fish aggregation. A comprehensive review of remotely sensed data applications in fisheries over the past three decades for investigating the relationships between oceanographic conditions and marine resources is provided, emphasizing how synoptic and informationrich SRS data have become instrumental in ecological analyses at community and ecosystem scales. Finally, SRS data, in conjunction with automated in situ data-acquisition systems, can provide the scientific community with a major source of information for ecosystem modelling, a key tool for implementing an EAFM.

115 citations


Cited by
More filters
01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: The analysis of time series: An Introduction, 4th edn. as discussed by the authors by C. Chatfield, C. Chapman and Hall, London, 1989. ISBN 0 412 31820 2.
Abstract: The Analysis of Time Series: An Introduction, 4th edn. By C. Chatfield. ISBN 0 412 31820 2. Chapman and Hall, London, 1989. 242 pp. £13.50.

1,583 citations

Journal ArticleDOI
29 Jul 2010-Nature
TL;DR: It is concluded that global phytoplankton concentration has declined over the past century; this decline will need to be considered in future studies of marine ecosystems, geochemical cycling, ocean circulation and fisheries.
Abstract: In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for approximately half the production of organic matter on Earth. Analyses of satellite-derived phytoplankton concentration (available since 1979) have suggested decadal-scale fluctuations linked to climate forcing, but the length of this record is insufficient to resolve longer-term trends. Here we combine available ocean transparency measurements and in situ chlorophyll observations to estimate the time dependence of phytoplankton biomass at local, regional and global scales since 1899. We observe declines in eight out of ten ocean regions, and estimate a global rate of decline of approximately 1% of the global median per year. Our analyses further reveal interannual to decadal phytoplankton fluctuations superimposed on long-term trends. These fluctuations are strongly correlated with basin-scale climate indices, whereas long-term declining trends are related to increasing sea surface temperatures. We conclude that global phytoplankton concentration has declined over the past century; this decline will need to be considered in future studies of marine ecosystems, geochemical cycling, ocean circulation and fisheries.

1,047 citations

Journal ArticleDOI
16 Jan 2015-Science
TL;DR: Today’s low rates of marine extinction may be the prelude to a major extinction pulse, similar to that observed on land during the industrial revolution, as the footprint of human ocean use widens.
Abstract: BACKGROUND: Comparing patterns of ter- restrial and marine defaunation helps to place human impacts on marine fauna in context and to navigate toward recovery. De- faunation began in ear- nest tens of thousands of years later in the oceans than it did on land. Al- though defaunation has been less severe in the oceans than on land, our effects on marine animals are increasing in pace and impact. Humans have caused few complete extinctions in the sea, but we are responsible for many ecological, commercial, and local extinctions. Despite our late start, humans have already powerfully changed virtually all major marine ecosystems. ADVANCES: Humans have profoundly de- creased the abundance of both large (e.g., whales) and small (e.g., anchovies) marine fauna. Such declines can generate waves of ecological change that travel both up and down marine food webs and can alter ocean ecosystem functioning. Human harvesters have also been a major force of evolutionary change in the oceans and have reshaped the genetic structure of marine animal popula- tions. Climate change threatens toaccelerate marine defaunation over the next century. The high mobility of many marine animals offers some increased, though limited, ca- pacity for marine species to respond to cli- mate stress, but it also exposes many species to increased risk from other stressors. Be- cause humans are intensely reliant on ocean ecosystems for food and other ecosystem ser- vices, we are deeply affected by all of these forecasted changes. Three lessons emerge when comparing the marine and terrestrial defaunation ex-

898 citations

Journal ArticleDOI
26 Oct 2012-Science
TL;DR: It is found that small unass assessed fisheries are in substantially worse condition than assessed fisheries, but that large unassessed fisheries may be performing nearly as well as their assessed counterparts.
Abstract: Recent reports suggest that many well-assessed fisheries in developed countries are moving toward sustainability. We examined whether the same conclusion holds for fisheries lacking formal assessment, which comprise >80% of global catch. We developed a method using species' life-history, catch, and fishery development data to estimate the status of thousands of unassessed fisheries worldwide. We found that small unassessed fisheries are in substantially worse condition than assessed fisheries, but that large unassessed fisheries may be performing nearly as well as their assessed counterparts. Both small and large stocks, however, continue to decline; 64% of unassessed stocks could provide increased sustainable harvest if rebuilt. Our results suggest that global fishery recovery would simultaneously create increases in abundance (56%) and fishery yields (8 to 40%).

645 citations