scispace - formally typeset
Search or ask a question
Author

Sylvain Courrech du Pont

Bio: Sylvain Courrech du Pont is an academic researcher from University of Paris. The author has contributed to research in topics: Meteorite & Pyrite. The author has an hindex of 19, co-authored 77 publications receiving 1310 citations. Previous affiliations of Sylvain Courrech du Pont include Paris Diderot University & Centre national de la recherche scientifique.
Topics: Meteorite, Pyrite, Geology, Martian, Pyroxene


Papers
More filters
Journal ArticleDOI
TL;DR: Three regimes of granular avalanches in fluids are put in light depending on the Stokes number St which prescribes the relative importance of grain inertia and fluid viscous effects and on the grain/fluid density ratio r.
Abstract: Three regimes of granular avalanches in fluids are put in light depending on the Stokes number St which prescribes the relative importance of grain inertia and fluid viscous effects and on the grain/fluid density ratio $r$. In gas ($r\ensuremath{\gg}1$ and $\mathrm{S}\mathrm{t}g1$, e.g., the dry case), the amplitude and time duration of avalanches do not depend on any fluid effect. In liquids ($r\ensuremath{\sim}1$), for decreasing St, the amplitude decreases and the time duration increases, exploring an inertial regime and a viscous regime. These three regimes are described by the analysis of the elementary motion of one grain.

175 citations

Journal ArticleDOI
01 Sep 2014-Geology
TL;DR: In this article, the authors developed a model for dune orientation that explains the coexistence of bedforms with different alignments in multidirectional wind regimes and showed that a single bidirectional flow regime can lead to two different dune orientations depending on sediment availability.
Abstract: Earth’s sand seas (dune fields) experience winds that blow with different strengths and from different directions in line with the seasons. In response, dune fields show a rich variety of shapes, from crescentic barchans to star and linear dunes. These dunes commonly exhibit complex and compound patterns with a range of length scales and various orientations, which up to now have remained difficult to relate to wind cycles. Here, we develop a model for dune orientation that explains the coexistence of bedforms with different alignments in multidirectional wind regimes. This model derives from subaqueous experiments, which show that a single bidirectional flow regime can lead to two different dune orientations depending on sediment availability, i.e., the erodibility of the bed. Sediment availability selects the overriding mechanism for the formation of dunes: increasing in height from the destabilization of a sand bed (with no restriction in sediment availability) or elongating in a finger on a non-erodible surface from a localized sand source. These mechanisms drive the dune orientation. Therefore, dune alignment maximizes dune orthogonality to sand fluxes in the bed instability mode, while dunes are aligned with the mean sand transport direction in the fingering mode. Applied to Earth’s deserts, the model quantitatively predicts the orientation of rectilinear dunes and their superimposed patterns. This field study suggests that many linear dunes on Earth elongate from sources, and are simply aligned with the mean sand transport direction.

145 citations

Journal ArticleDOI
TL;DR: In this article, a 4-year landscape-scale experiment in the Tengger Desert, Mongolia, demonstrates that the orientation of oblique dune crests is controlled by the wind regime.
Abstract: The dynamics of dune evolution under bimodal wind regimes are poorly understood owing to a lack of long-term wind records and the limitations of most experimental set-ups. A 4-year landscape-scale experiment in the Tengger Desert, Mongolia, demonstrates that the orientation of oblique dune crests is controlled by the wind regime.

98 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a discrete numerical model of star-dune behavior based on the feedback mechanisms between wind flow and bedform dynamics, and find that the arms of the star dunes propagate only under favourable wind regimes.
Abstract: Star dunes are common in sand seas, but the mechanisms driving their formation are unclear. Numerical modelling indicates that the morphology of the dunes is controlled by the frequency of changes in the wind regime. Star dunes are giant, pyramid-shaped dunes composed of interlaced arms. These arms are marked by sinuous crests and slip faces of various directions1,2. Their radial symmetry and scale suggest that the star dunes form as a result of complex interactions between a multidirectional wind regime and topography3,4. However, despite their ubiquity in modern sand seas5,6, comparatively little is known about their formation and evolution. Here we present a discrete numerical model of star-dune behaviour based on the feedback mechanisms between wind flow and bedform dynamics7. Our simulations indicate that the morphology of star dunes results from the combination of individual longitudinal dunes. We find that the arms of the star dunes propagate only under favourable wind regimes. In contrast to dunes that form from an erodible bed8, the crests of the propagating arms are oriented such that sand flux is maximized in the direction of arm growth. Our analysis of the simulated three-dimensional structures suggests that the morphodynamics of the arms are controlled by the frequency of wind reorientation, with a high frequency of reorientation leading to smaller arm dimension and high rates of growth. We suggest that arm propagation is an important process of mass exchange in dune fields.

94 citations

Journal ArticleDOI
TL;DR: In this paper, the authors numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground.
Abstract: New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation.

74 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: A quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case and a transverse analysis of the data across the different configurations allows to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations.
Abstract: The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has been the subject of many experiments and discrete particle simulations. This paper is a collective work carried out among the French research group Groupement de Recherche Milieux Divises (GDR MiDi). It proceeds from the collection of results on steady uniform granular flows obtained by different groups in six different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case. Second, a transverse analysis of the data across the different configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates the richness of granular flows and underlines the open problem of defining a single rheology.

1,664 citations

Journal ArticleDOI
TL;DR: Internal Organization of the Plant Body, from embryo to the Adult Plant, and some Factors in Development of Secondary Xylem: Common Types of Secondary Growth.
Abstract: INTRODUCTION. Internal Organization of the Plant Body. Summary of Types of Cells and Tissues. General References. DEVELOPMENT OF THE SEED PLANT. The Embryo. From embryo to the Adult Plant. Apical Meristems and Their Derivatives. Differentiation, Specialization, and Morphogenesis. References. THE CELL. Cytoplasm. Nucleus. Plastids. Mitochondria. Microbodies. Vacuoles. Paramural Bodies. Ribosomes. Dictyosomes. Endoplasmic Reticulum. Lipid Globules. Microtubules. Ergastic Substances. References. CELL WALL. Macromolecular Components and Their Organization in the Wall. Cell Wall Layers. Intercellular Spaces. Pits, Primary Pit--Fields, and Plasmodesmata. Origin of Cell Wall During Cell Division. Growth of Cell Wall. References. PARENCHYMA AND COLLENCHYMA. Parenchyma. Collenchyma. References. SCLERENCHYMA. Sclereids. Fibers. Development of Sclereids and Fibers. References. EPIDERMIS. Composition. Developmental Aspects. Cell Wall. Stomata. Trichomes. References. XYLEM: GENERAL STRUCTURE AND CELL TYPES. Gross Structure of Secondary Xylem. Cell Types in the Secondary Xylem. Primary Xylem. Differentiation of Tracheary Elements. References. XYLEM: VARIATION IN WOOD STRUCTURE. Conifer Wood. Dicotyledon Wood. Some Factors in Development of Secondary Xylem. Identification of Wood. References. VASCULAR CAMBIUM. Organization of Cambium. Developmental Changes in the Initial Layer. Patterns and Causal Relations in Cambial Activity. References. PHLOEM. Cell Types. Primary Phloem. Secondary Phloem. References. PERIDERM. Structure of Periderm and Related Tissues. Development of Periderm. Outer Aspect of Bark in Relation to Structure. Lenticels. References. SECRETORY STRUCTURES. External Secretory Structures. Internal Secretory Structures. References. THE ROOT: PRIMARY STATE OF GROWTH. Types of Roots. Primary Structure. Development. References. THE ROOT: SECONDARY STATE OF GROWTH AND ADVENTITIOUS ROOTS. Common Types of Secondary Growth. Variations in Secondary Growths. Physiologic Aspects of Secondary Growth in Roots. Adventitious Roots. References. THE STEM: PRIMARY STATE OF GROWTH. External Morphology. Primary Structure. Development. References. THE STEM: SECONDARY GROWTH AND STRUCTURAL TYPES. Secondary Growth. Types of Stems. References. THE LEAF: BASIC STRUCTURE AND DEVELOPMENT. Morphology. Histology of Angiosperm Leaf. Development. Abscission. References. THE LEAF: VARIATIONS IN STRUCTURE. Leaf Structure and Environment. Dicotyledon Leaves. Monocotyledon Leaves. Gymnosperm Leaves. References. THE FLOWER: STRUCTURE AND DEVELOPMENT. Concept. Structure. Development. References. THE FLOWER: REPRODUCTIVE CYCLE. Microsporogenesis. Pollen. Male Gametophyte. Megasporogenesis. Female Gametophyte. Fertilization. References. THE FRUIT. Concept and Classification. The Fruit Wall. Fruit Types. Fruit Growths. Fruit Abscission. References. THE SEED. Concept and Morphology. Seed Development. Seed Coat. Nutrient Storage Tissues. References. EMBRYO AND SEEDLING. Mature Embryo. Development of Embryo. Classification of Embryos. Seedling. References. Glossary. Index.

1,454 citations