scispace - formally typeset
Search or ask a question
Author

Sylvain Doré

Bio: Sylvain Doré is an academic researcher from University of Florida. The author has contributed to research in topics: Neuroprotection & Heme oxygenase. The author has an hindex of 53, co-authored 196 publications receiving 11858 citations. Previous affiliations of Sylvain Doré include Johns Hopkins University & Northern Arizona University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America and show that carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most.
Abstract: Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m−2y−1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m−2y−1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

794 citations

Journal ArticleDOI
TL;DR: A neuroprotective role for BR formed from HO2, which is constitutive and highly concentrated in neurons, is demonstrated, and BR, an antioxidant, is neuroprot protective at nanomolar concentrations.
Abstract: Heme oxygenase (HO) catalyzes the conversion of heme to carbon monoxide, iron, and biliverdin, which is immediately reduced to bilirubin (BR). Two HO active isozymes exist: HO1, an inducible heat shock protein, and HO2, which is constitutive and highly concentrated in neurons. We demonstrate a neuroprotective role for BR formed from HO2. Neurotoxicity elicited by hydrogen peroxide in hippocampal and cortical neuronal cultures is prevented by the phorbol ester, phorbol 12-myristate 13-acetate (PMA) via stimulation of protein kinase C. We observe phosphorylation of HO2 through the protein kinase C pathway with enhancement of HO2 catalytic activity and accumulation of BR in neuronal cultures. The neuroprotective effects of PMA are prevented by the HO inhibitor tin protoporphyrin IX and in cultures from mice with deletion of HO2 gene. Moreover, BR, an antioxidant, is neuroprotective at nanomolar concentrations.

684 citations

Journal ArticleDOI
TL;DR: In this review, a summary of the available literature on the inflammatory responses after ICH is presented along with discussion of some of the emerging opportunities for potential therapeutic strategies.
Abstract: Intracerebral hemorrhage (ICH) is a devastating clinical event without effective therapies. Increasing evidence suggests that inflammatory mechanisms are involved in the progression of ICH-induced brain injury. Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including prostaglandins, chemokines, cytokines, extracellular proteases, and reactive oxygen species. Better understanding of the role of the ICH-induced inflammatory response and its potential for modulation might have profound implications for patient treatment. In this review, a summary of the available literature on the inflammatory responses after ICH is presented along with discussion of some of the emerging opportunities for potential therapeutic strategies. In the near future, additional strategies that target inflammation could offer exciting new promise in the therapeutic approach to ICH.

588 citations

Journal ArticleDOI
TL;DR: Cytoprotection by HO1 is attributable to its augmentation of iron efflux, reflecting a role for HO1 in modulating intracellular iron levels and regulating cell viability.
Abstract: Haem oxygenase-1 (HO1) is a heat-shock protein that is induced by stressful stimuli. Here we demonstrate a cytoprotective role for HO1: cell death produced by serum deprivation, staurosporine or etoposide is markedly accentuated in cells from mice with a targeted deletion of the HO1 gene, and greatly reduced in cells that overexpress HO1. Iron efflux from cells is augmented by HO1 transfection and reduced in HO1-deficient fibroblasts. Iron accumulation in HO1-deficient cells explains their death: iron chelators protect HO1-deficient fibroblasts from cell death. Thus, cytoprotection by HO1 is attributable to its augmentation of iron efflux, reflecting a role for HO1 in modulating intracellular iron levels and regulating cell viability.

530 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
21 Jul 1979-BMJ
TL;DR: It is suggested that if assessment of overdoses were left to house doctors there would be an increase in admissions to psychiatric units, outpatients, and referrals to social services, but for house doctors to assess overdoses would provide no economy for the psychiatric or social services.
Abstract: admission. This proportion could already be greater in some parts of the country and may increase if referrals of cases of self-poisoning increase faster than the facilities for their assessment and management. The provision of social work and psychiatric expertise in casualty departments may be one means of preventing unnecessary medical admissions without risk to the patients. Dr Blake's and Dr Bramble's figures do not demonstrate, however, that any advantage would attach to medical teams taking over assessment from psychiatrists except that, by implication, assessments would be completed sooner by staff working on the ward full time. What the figures actually suggest is that if assessment of overdoses were left to house doctors there would be an increase in admissions to psychiatric units (by 19°U), outpatients (by 5O°'), and referrals to social services (by 140o). So for house doctors to assess overdoses would provide no economy for the psychiatric or social services. The study does not tell us what the consequences would have been for the six patients who the psychiatrists would have admitted but to whom the house doctors would have offered outpatient appointments. E J SALTER

4,497 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations

Journal ArticleDOI
TL;DR: As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.
Abstract: The brain is the key organ of the response to stress because it determines what is threatening and, therefore, potentially stressful, as well as the physiological and behavioral responses which can be either adaptive or damaging. Stress involves two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Beyond the "flight-or-fight" response to acute stress, there are events in daily life that produce a type of chronic stress and lead over time to wear and tear on the body ("allostatic load"). Yet, hormones associated with stress protect the body in the short-run and promote adaptation ("allostasis"). The brain is a target of stress, and the hippocampus was the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. Stress and stress hormones produce both adaptive and maladaptive effects on this brain region throughout the life course. Early life events influence life-long patterns of emotionality and stress responsiveness and alter the rate of brain and body aging. The hippocampus, amygdala, and prefrontal cortex undergo stress-induced structural remodeling, which alters behavioral and physiological responses. As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.

3,062 citations

Journal ArticleDOI
TL;DR: ins biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm, and the roles of individual mediators and their receptors in modulating the inflammatory response.
Abstract: Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.

2,713 citations