scispace - formally typeset
Search or ask a question
Author

Sylvia R. Desjardins

Bio: Sylvia R. Desjardins is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Absorption spectroscopy & Dipole. The author has an hindex of 1, co-authored 1 publications receiving 200 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the polarized X-ray absorption cross section of the ls → 3d transition in a square planar CuCl2−4 complex has been measured with respect to rotation about an axis normal to the CuCl4.

204 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the 1s → 3d pre-edge features of high-spin ferrous and ferric model complexes in octahedral, tetrahedral, and square pyramidal environments were investigated and the allowable many-electron excited states were determined using ligand field theory.
Abstract: X-ray absorption Fe−K edge data on ferrous and ferric model complexes have been studied to establish a detailed understanding of the 1s → 3d pre-edge feature and its sensitivity to the electronic structure of the iron site. The energy position and splitting, and intensity distribution, of the pre-edge feature were found to vary systematically with spin state, oxidation state, geometry, and bridging ligation (for binuclear complexes). A methodology for interpreting the energy splitting and intensity distribution of the 1s → 3d pre-edge features was developed for high-spin ferrous and ferric complexes in octahedral, tetrahedral, and square pyramidal environments and low-spin ferrous and ferric complexes in octahedral environments. In each case, the allowable many-electron excited states were determined using ligand field theory. The energies of the excited states were calculated and compared to the energy splitting in the 1s → 3d pre-edge features. The relative intensities of electric quadrupole transitions...

1,181 citations

Journal ArticleDOI
01 Sep 2017-Science
TL;DR: It is demonstrated that under reaction conditions, mobilized Cu ions can travel through zeolite windows and form transient ion pairs that participate in an oxygen (O2)–mediated CuI→CuII redox step integral to SCR.
Abstract: Copper ions exchanged into zeolites are active for the selective catalytic reduction (SCR) of nitrogen oxides (NO x ) with ammonia (NH3), but the low-temperature rate dependence on copper (Cu) volumetric density is inconsistent with reaction at single sites. We combine steady-state and transient kinetic measurements, x-ray absorption spectroscopy, and first-principles calculations to demonstrate that under reaction conditions, mobilized Cu ions can travel through zeolite windows and form transient ion pairs that participate in an oxygen (O2)-mediated CuI→CuII redox step integral to SCR. Electrostatic tethering to framework aluminum centers limits the volume that each ion can explore and thus its capacity to form an ion pair. The dynamic, reversible formation of multinuclear sites from mobilized single atoms represents a distinct phenomenon that falls outside the conventional boundaries of a heterogeneous or homogeneous catalyst.

594 citations

Journal ArticleDOI
TL;DR: In this paper, the local atomic structures of Zr and dopant cations in cubic and tetragonal cubic cubic zirconia solid solutions with Fe2O3, Ga2O 3, Y2O4, Y3, and Gd2O5 have been determined.
Abstract: Local atomic structures of Zr and dopant cations in zirconia solid solutions with Fe2O3, Ga2O3, Y2O3, and Gd2O3 have been determined. The Zr ions in both partially stabilized tetragonal and fully stabilized cubic zirconia have their own characteristic structures which are dopant-independent. The dopant cations substitute for Zr ions despite severe local distortions necessitated by the large difference in dopant–O distance ana Zr─O distance. Dopant ionic size determines the preferred locations of oxygen vacancies. Vacancies introduced by oversized dopants (Y and Gd) are located as nearest neighbors to Zr atoms, leaving 8-fold oxygen coordination to dopant cations. Undersized dopants (Fe and Ga) compete with Zr ions for the oxygen vacancies in zirconia, resulting in 6-fold oxygen coordination and a large disturbance to the surrounding next nearest neighbors. Since oxygen vacancies associated with Zr can provide stability for tetragonal and cubic zirconia, these results suggest an explanation for the observation that oversized trivalent dopants are more effective than undersized trivalent dopants in stabilizing cubic and tetragonal phases.

574 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the characteristics of pre-edge peaks in K-edge x-ray absorption near edge structure (XANES) spectra of 3d transition metals from viewpoints of the selection rule, coordination number, number of d-electrons, and symmetry of the coordination sphere.
Abstract: The characteristics of pre-edge peaks in K-edge x-ray absorption near edge structure (XANES) spectra of 3d transition metals were reviewed from viewpoints of the selection rule, coordination number, number of d-electrons, and symmetry of the coordination sphere. The contribution of the electric dipole and quadrupole transition to the peaks was discussed on the basis of the group theory, polarized spectra, and theoretical calculations. The pre-edge peak intensity for Td symmetry is larger than those for Oh symmetry for all 3d elements. The intense pre-edge peak for tetrahedral species of 3d transition metals is not due to 1s–3d transition, but transition to the p component in d–p hybridized orbital. The mixing of metal 4p orbitals with the 3d orbitals depends strongly on the coordination symmetry, and the possibility is predictable by group theory. The transition of 1s electron to d orbitals is electric quadrupole component in any of the symmetries. The d–p hybridization does not occur with regular octahedral symmetry, and the weak pre-edge peak consists of 1s–3d electric quadrupole transition. The pre-edge peak intensity for a compound with a tetrahedral center changes as a function of the number of 3d electrons regardless of the kind of element; it is maximized at d0 and gradually decreases to zero at d10. The features of pre-edge peaks in K-edge XANES spectra for 4d elements and the L1-edge for 5d elements are analogous with those for 3d elements, but the pre-edge peak is broadened due to the wide natural width of the core level. Copyright © 2008 John Wiley & Sons, Ltd.

565 citations

Journal ArticleDOI
TL;DR: The OpenMolcas environment is described and features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism and properties are described.
Abstract: In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

559 citations