scispace - formally typeset
Search or ask a question
Author

T. A. Blackmore

Bio: T. A. Blackmore is an academic researcher from Met Office. The author has contributed to research in topics: Radiometer & Advanced very-high-resolution radiometer. The author has an hindex of 5, co-authored 7 publications receiving 141 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The (A)RC: (Advanced) ATSR Re-analysis for Climate initiative as discussed by the authors aims to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogeneous record that is stable in time to within 0.05 K decade-1.

53 citations

Journal ArticleDOI
Roger Saunders1, T. A. Blackmore1, Brett Candy1, Peter N. Francis1, Tim J. Hewison 
TL;DR: The limitations of the polar simultaneous nadir overpasses often used to monitor biases between polar-orbiting sensors are shown with these results due to the apparent strong dependence of some radiance biases on scene temperature.
Abstract: Radiances measured by satellite radiometers are often subject to biases due to limitations in their radiometric calibration. In support of the Global Space-based Inter-Calibration System project, to improve the quality of calibrated radiances from atmospheric sounders and imaging radiometers, an activity is underway to compare routinely measured radiances with those simulated from operational global numerical weather prediction (NWP) fields. This paper describes the results obtained from the first three years of these comparisons. Data from the High-resolution Infrared Radiation Sounder, Spinning Enhanced Visible and Infrared Imager, Advanced Along-Track Scanning Radiometer, Advanced Microwave Sounding Unit, and Microwave Humidity Sounder radiometers, together with the Atmospheric Infrared Sounder, a spectrometer, and the Infrared Atmospheric Sounding Interferometer, an interferometer, were included in the analysis. Changes in mean biases and their standard deviations were used to investigate the temporal stability of the bias and radiometric noise of the instruments. A double difference technique can be employed to remove the effect of changes or deficiencies in the NWP model which can contribute to the biases. The variation of the biases with other variables is also investigated, such as scene temperature, scan angle, location, and time of day. Many of the instruments were shown to be stable in time, with a few exceptions, but measurements from the same instrument on different platforms are often biased with respect to each other. The limitations of the polar simultaneous nadir overpasses often used to monitor biases between polar-orbiting sensors are shown with these results due to the apparent strong dependence of some radiance biases on scene temperature.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-spectral rainfall estimation algorithm has been developed for the Sahel region of West Africa with the purpose of producing accumulated rainfall estimates for drought monitoring and food security.
Abstract: . A multi-spectral rainfall estimation algorithm has been developed for the Sahel region of West Africa with the purpose of producing accumulated rainfall estimates for drought monitoring and food security. Radar data were used to calibrate multi-channel SEVIRI data from MSG, and a probability of rainfall at several different rain-rates was established for each combination of SEVIRI radiances. Radar calibrations from both Europe (the SatPrecip algorithm) and Niger (TAMORA algorithm) were used. 10 day estimates were accumulated from SatPrecip and TAMORA and compared with kriged gauge data and TAMSAT satellite rainfall estimates over West Africa. SatPrecip was found to produce large overestimates for the region, probably because of its non-local calibration. TAMORA was negatively biased for areas of West Africa with relatively high rainfall, but its skill was comparable to TAMSAT for the low-rainfall region climatologically similar to its calibration area around Niamey. These results confirm the high importance of local calibration for satellite-derived rainfall estimates. As TAMORA shows no improvement in skill over TAMSAT for dekadal estimates, the extra cloud-microphysical information provided by multi-spectral data may not be useful in determining rainfall accumulations at a ten day timescale. Work is ongoing to determine whether it shows improved accuracy at shorter timescales.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a multi-linear regression with aerosol optical depths from the Total Ozone Mapping Spectrometer (TOMS) during periods of high volcanic aerosol.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of a project to combine SSTs from two instruments: the Along-Track Scanning Radiometer (ATSR) SST and the Advanced Very High Resolution Radiometers (AVHRR) Pathfinder SST.

11 citations


Cited by
More filters
Journal ArticleDOI
16 Aug 2016-Sensors
TL;DR: The commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters, including chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygendemand (COD).
Abstract: Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

554 citations

Journal ArticleDOI
TL;DR: TAMSAT African Rainfall Climatology And Time-series (TARCAT) as discussed by the authors is a 30-year (1983-2012) temporally consistent rainfall dataset for Africa known as TARCAT.
Abstract: African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30-year (1983–2012), temporally consistent rainfall dataset for Africa known as TARCAT (TAMSAT African Rainfall Climatology And Time-series) using archived Meteosat thermal infra-red (TIR) imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10-day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation datasets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by −0.37 mm day−1 (21%) compared to other datasets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.

220 citations

Journal ArticleDOI
TL;DR: Use of a robust set of internationally agreed upon and coordinated intercalibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth's climate at uncertainty levels needed to detect and attribute the mechanisms of change.
Abstract: Intercalibration of satellite instruments is critical for detection and quantification of changes in the Earth's environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be interoperable, the instruments must be cross-calibrated. To meet the stringent needs of such applications, instruments must provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Systeme International d'unites traceable calibration and validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Intercalibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Intercalibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated intercalibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth's climate at uncertainty levels needed to detect and attribute the mechanisms of change. This paper summarizes the state-of-the-art of postlaunch radiometric calibration of remote sensing satellite instruments through intercalibration.

195 citations

Journal ArticleDOI
TL;DR: Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa.
Abstract: Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as ...

194 citations

Journal ArticleDOI
TL;DR: The Multi-scale Ultra-high resolution (MUR) sea surface temperature (SST) analysis presented daily SST estimates on a global 0.01° × 0.1° grid as discussed by the authors, where only the night-time (dusk to dawn) satellite SST retrievals are used to estimate the foundation SST.

191 citations