scispace - formally typeset
Search or ask a question
Author

T. A. Johnson

Bio: T. A. Johnson is an academic researcher from University of Iowa. The author has contributed to research in topics: Taylor–Couette flow & Reynolds equation. The author has an hindex of 1, co-authored 1 publications receiving 843 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the flow of an incompressible viscous fluid past a sphere is investigated numerically and experimentally over flow regimes including steady and unsteady laminar flow at Reynolds numbers of up to 300.
Abstract: The flow of an incompressible viscous fluid past a sphere is investigated numerically and experimentally over flow regimes including steady and unsteady laminar flow at Reynolds numbers of up to 300. Flow-visualization experiments are used to validate the numerical results and to provide additional insight into the behaviour of the flow. Near-wake visualizations are presented for both steady and unsteady flows. Calculations for Reynolds numbers of up to 200 show steady axisymmetric flow and compare well with previous experimental and numerical observations. For Reynolds numbers of 210 to 270, a steady non-axisymmetric regime is found, also in agreement with previous work. To advance the basic understanding of this transition, a symmetry breaking mechanism is proposed based on a detailed analysis of the calculated flow field.Unsteady flow is calculated at Reynolds numbers greater than 270. The results at a Reynolds number of 300 show a highly organized periodic flow dominated by vortex shedding. An analysis of the calculated vortical structure of the wake reveals a sequence of shed hairpin vortices in combination with a sequence of previously unidentified induced hairpin vortices. The numerical results compare favourably with experimental flow visualizations which, interestingly, fail to reveal the induced vortices. Based on the deduced symmetry-breaking mechanism, an analysis of the unsteady kinematics, and the experimental results, a mechanism driving the transition to unsteady flow is proposed.

920 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new immersed-boundary method for simulating flows over or inside complex geometries is developed by introducing a mass source/sink as well as a momentum forcing.

1,090 citations

Journal ArticleDOI
TL;DR: A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described, with special emphasis on the immersed boundary treatment for stationary and moving boundaries.

1,013 citations

Journal ArticleDOI
TL;DR: In this article, a trident approach consisting of experimental, analytical, and numerical work has given a clearer description of the hydrodynamic forces experienced by isolated bubbles moving either in inviscid flows or in slightly viscous laminar flows, and a significant part of the paper is devoted to a discussion of drag, added mass force, and shear-induced lift experienced by spheroidal bubbles moving in inertially dominated, time-dependent, rotational, nonuniform flows.
Abstract: ▪ Abstract Predicting the motion of bubbles in dispersed flows is a key problem in fluid mechanics that has a bearing on a wide range of applications from oceanography to chemical engineering. In this review we synthesize the recent progress made in describing bubble motion in inhomogeneous flow. A trident approach consisting of experimental, analytical, and numerical work has given a clearer description of the hydrodynamic forces experienced by isolated bubbles moving either in inviscid flows or in slightly viscous laminar flows. A significant part of the paper is devoted to a discussion of drag, added-mass force, and shear-induced lift experienced by spheroidal bubbles moving in inertially dominated, time-dependent, rotational, nonuniform flows. The important influence of surfactants and shape distortion on bubble motion in a quiescent liquid is highlighted. Examples of bubble motion in inhomogeneous flows combining several of the effects mentioned above are discussed.

689 citations

Journal ArticleDOI
TL;DR: A non-boundary-conforming formulation for simulating complex turbulent flows with dynamically moving boundaries on fixed Cartesian grids is proposed and the concept of field-extension is also introduced to treat the points emerging from a moving solid body to the fluid.

537 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical method is developed for solving the Navier-Stokes equations in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics.

534 citations