scispace - formally typeset
Search or ask a question
Author

T.A. Pecoraro

Bio: T.A. Pecoraro is an academic researcher from ExxonMobil. The author has contributed to research in topics: Hydrodesulfurization & Dibenzothiophene desulfurization. The author has an hindex of 4, co-authored 5 publications receiving 1164 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The primary effect in the hydrodesulfurization of dibenzothiophene by transition metal sulfides is related to the position the metal occupies in the periodic table.

722 citations

Journal ArticleDOI
TL;DR: In this article, the anisotropic nature of molybdenum disulfide has been investigated in terms of the O2 chemisorption capacities of the activity-tested catalysts.

236 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of different synthetic techniques, dibenzothiophene desulfurization activity studies, and electron spin resonance observations are used to explore the relation between defects and hydrodesulfurisation (HDS) activity for bulk molybdenum sulfides and supported, sulfided Mo γ Al 2 O 3 catalysts.

45 citations

Journal Article
TL;DR: In this paper, a combination of different synthetic techniques, dibenzothiophene desulfurization activity studies, and electron spin resonance observations are used to explore the relation between defects and HDS activity for bulk molybdenum sulfides and supported, sulfided Mo/gamma-Al/sub 2/O/sub 3/ catalysts.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The chemical effects of ultrasound derive primarily from acoustic cavitation, which results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble as mentioned in this paper.
Abstract: The chemical effects of ultrasound derive primarily from acoustic cavitation. Bubble collapse in liquids results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble. The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical reactions under extreme conditions. A diverse set of applications of ultrasound to enhance chemical reactivity has been explored with important uses in synthetic materials chemistry. For example, the sonochemical decomposition of volatile organometallic precursors in low-volatility solvents produces nanostructured materials in various forms with high catalytic activities. Nanostructured metals, alloys, oxides, carbides and sulfides, nanometer colloids, and nanostructured supported catalysts can all be prepared by this general route. Another important application of sonochemistry in materials chemistry has been the preparation of biomaterials, most notably protein microspheres. Such microspheres have a wide range of biomedical applications, including their use in echo contrast agents for sonography, magnetic resonance imaging, contrast enhancement, and oxygen or drug delivery. Other applications include the modification of polymers and polymer surfaces.

1,550 citations

Journal ArticleDOI
TL;DR: The fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis are summarized.
Abstract: Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis.

1,501 citations

Journal ArticleDOI
TL;DR: In this paper, the turnover frequency, an intrinsic activity metric, and the total electrode activity, a device-oriented activity metric are compared between molybdenum sulfide catalysts.
Abstract: We discuss recent developments in nanostructured molybdenum sulfide catalysts for the electrochemical hydrogen evolution reaction. To develop a framework for performing consistent and meaningful comparisons between catalysts, we review standard experimental methodologies for measuring catalyst performance and define two metrics used in this perspective for comparing catalyst activity: the turnover frequency, an intrinsic activity metric, and the total electrode activity, a device-oriented activity metric. We discuss general strategies for synthesizing catalysts with improved activity, namely, increasing the number of electrically accessible active sites or increasing the turnover frequency of each site. Then we consider a number of state-of-the-art molybdenum sulfide catalysts, including crystalline MoS2, amorphous MoSx, and molecular cluster materials, to highlight these strategies in practice. Comparing these catalysts reveals that most of the molybdenum sulfide catalysts have similar active site turnov...

1,272 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent advancement on ultra low sulfur diesel (ULSD) production from both scientific and applied point of view, highlighting the importance of catalyst selection and hydrogen consumption issues.

1,074 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the recent developments of heterogeneous electrocatalysts for the hydrogen evolution reaction is presented in this paper, where the challenges and solutions for further improving their performance are discussed.
Abstract: The hydrogen evolution reaction plays a decisive role in a range of electrochemical and photoelectrochemical devices. It requires efficient and robust electrocatalysts to lower the reaction overpotential and minimize energy consumption. Over the last decade, we have witnessed a rapid rise in new electrocatalysts, particularly those based on non-precious metals. Some of them approach the activity of precious metal benchmarks. Here, we present a comprehensive overview of the recent developments of heterogeneous electrocatalysts for the hydrogen evolution reaction. Detailed discussion is organized from precious metals to non-precious metal compounds including alloys, chalcogenides, carbides, nitrides, borides and phosphides, and finally to metal-free materials. Emphasis is placed on the challenges facing these electrocatalysts and solutions for further improving their performance. We conclude with a perspective on the development of future HER electrocatalysts.

845 citations