scispace - formally typeset
Search or ask a question
Author

T. Ardan

Bio: T. Ardan is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Cornea & Retinal pigment epithelium. The author has an hindex of 14, co-authored 34 publications receiving 765 citations.

Papers
More filters
Journal Article
TL;DR: The decrease of corneal antioxidant protective mechanisms results in oxidative injury of the cornea and causes damage of the inner parts of the eye by UVB rays and by reactive oxygen species generated by them.
Abstract: In this minireview, the factors involved in the development of corneal injury due to an increased amount of UVB rays are summarized. Experimental studies have shown that an increased number of UVB rays leads to a profound decrease in corneal antioxidants (high molecular weight, antioxidant enzymes as well as low molecular weight, mainly ascorbic acid) so that a prooxidant/antioxidant imbalance appears. The decrease of corneal antioxidant protective mechanisms results in oxidative injury of the cornea and causes damage of the inner parts of the eye by UVB rays and by reactive oxygen species generated by them.

130 citations

Journal ArticleDOI
TL;DR: Repeated irradiation of the cornea with UVB rays evokes a deficiency in antioxidant enzymes in the corneal epithelium, which very probably contributes to the damage of thecornea (and possibly also deeper parts of the eye) fromUVB rays and the reactive oxygen products generated by them.
Abstract: In this study, the effects of UVA and UVB rays on antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) were examined in the corneal epithelium. The corneas of albino rabbits were irradiated with a UV lamp generating UVA (365 nm wavelength) or UVB rays (312 nm wavelength), 1 x daily for 5 min, from a distance of 0.03 m, over 4 days (shorter procedure) or 8 days (longer procedure). In contrast to UVA rays, which did not evoke significant disturbances, UVB rays changed the activities of antioxidant enzymes. The longer repeated irradiation with UVB rays was performed, the deeper the observed decrease in antioxidant enzymes. The shorter procedure evoked a more profound decrease of glutathione peroxidase and catalase (the enzymes cleaving hydrogen peroxide) than of superoxide dismutase, an enzyme scavenging superoxide radical and producing hydrogen peroxide during the dismutation reaction of a superoxide free radical. This may contribute to an insufficient hydrogen peroxide cleavage at the corneal surface and danger to the cornea from oxidative damage. After the longer procedure (UVB rays), the activities of all antioxidant enzymes were very low or completely absent. In conclusion, repeated irradiation of the cornea with UVB rays evokes a deficiency in antioxidant enzymes in the corneal epithelium, which very probably contributes to the damage of the cornea (and possibly also deeper parts of the eye) from UVB rays and the reactive oxygen products generated by them.

98 citations

Journal ArticleDOI
TL;DR: Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the corneal damage evoked by UVB rays.
Abstract: The corneas of albino rabbits were irradiated (5 min exposure once a day) with UVB rays (312 nm) for 4 days (shorter procedure) or 8 days (longer procedure). The eyes were examined microbiologically and only the corneas of sterile eyes or eyes with non-pathogenic microbes were employed. Histochemically, the activities of reactive oxygen species (ROS)-generating oxidases (xanthine oxidase, D-amino acid oxidase and alpha-hydroxy acid oxidase) were examined in cryostat sections of the whole corneas. Biochemically, the activity of xanthine oxidoreductase/xanthine oxidase was investigated in the scraped corneal epithelium. UVB rays significantly changed enzyme activities in the corneas. In comparison to the normal cornea, where of ROS-generating oxidases only xanthine oxidase showed significant activity in the corneal epithelium and endothelium, D-amino acid oxidase was very low and alpha-hydroxy acid oxidase could not be detected at all, in the cornea repeatedly irradiated with UVB rays, increased activities of xanthine oxidase and D-amino acid oxidase were observed in all corneal layers. Only after the longer procedure the xanthine oxidase and D-amino acid oxidase activities were decreased in the thinned epithelium in parallel with its morphological disturbances. Further results show that the xanthine oxidase/xanthine oxidoreductase ratio increased in the epithelium together with the repeated irradiation with UVB rays. This might suggest that xanthine dehydrogenase is converted to xanthine oxidase. However, in comparison to the normal corneal epithelium, the total amount of xanthine oxidoredutase was decreased in the irradiated epithelium. It is presumed that xanthine oxidoreductase might be released extracellularly (into tears) or the enzyme molecules were denatured due to UVB rays (particulary after the longer procedure). Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the corneal damage evoked by UVB rays.

68 citations

Journal ArticleDOI
TL;DR: It is suggested that the decreased expression of antioxidant enzymes in dry eye disease (SS) contributes to the development of anterior eye surface oxidative injuries.
Abstract: Previous studies have described elevated lipid peroxidase, myeloperoxidase and xanthine oxidoreductase/xanthine oxidase levels on the ocular surface of patients suffering from autoimmune dry eye (Sjogren's syndrome, SS). Reactive oxygen species generated by various enzymatic systems may be dangerous to the eye if they are not sufficiently cleaved by antioxidants. Because antioxidants have not been investigated in dry eye, the aim of this study was to examine the expression of antioxidant enzymes that cleave reactive oxygen species and play a key role in antioxidant protection. Conjunctival epithelial cells of dry eye (SS) patients were obtained by the method of impression cytology using Millicell membranes. Normal eyes served as controls. In the conjunctival epithelium superoxide dismutase, catalase and glutathione peroxidase were examined immunohistochemically. The enzyme expression levels were determined by image analysis and statistical evaluation. In contrast to normal eyes, where antioxidant enzymes were highly expressed in the conjunctival epithelium, in dry eye their expression was much less pronounced in correlation with the increasing severity of dry eye symptoms. Our study suggests that the decreased expression of antioxidant enzymes in dry eye disease (SS) contributes to the development of anterior eye surface oxidative injuries.

66 citations

Journal ArticleDOI
TL;DR: Examination of corneal epithelium of normal eyes of ox, pig, guinea-pig, and rat using immunohistochemical and enzyme histochemical methods shows that xanthine oxidoreductase and xanthinine oxidase are present both as proteins and as active enzymes in the corneals of all animals studied.

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease, finding the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation to be important.
Abstract: The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjogren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.

994 citations

Journal ArticleDOI
TL;DR: The current state of knowledge about the three-dimensional stromal architecture at the microscopic level is described, and about the control mechanisms at the nanoscopic level that lead to optical transparency are described.

492 citations

Journal ArticleDOI
TL;DR: This report presents future directions to address iatrogenic DED, including the need for more in-depth epidemiological studies about the risk factors, development of less toxic medications and preservatives, as well as new techniques for less invasive eye surgeries.
Abstract: Dry eye can be caused by a variety of iatrogenic interventions. The increasing number of patients looking for eye care or cosmetic procedures involving the eyes, together with a better understanding of the pathophysiological mechanisms of dry eye disease (DED), have led to the need for a specific report about iatrogenic dry eye within the TFOS DEWS II. Topical medications can cause DED due to their allergic, toxic and immuno-inflammatory effects on the ocular surface. Preservatives, such as benzalkonium chloride, may further aggravate DED. A variety of systemic drugs can also induce DED secondary to multiple mechanisms. Moreover, the use of contact lens induces or is associated with DED. However, one of the most emblematic situations is DED caused by surgical procedures such as corneal refractive surgery as in laser-assisted in situ keratomileusis (LASIK) and keratoplasty due to mechanisms intrinsic to the procedure (i.e. corneal nerve cutting) or even by the use of postoperative topical drugs. Cataract surgery, lid surgeries, botulinum toxin application and cosmetic procedures are also considered risk factors to iatrogenic DED, which can cause patient dissatisfaction, visual disturbance and poor surgical outcomes. This report also presents future directions to address iatrogenic DED, including the need for more in-depth epidemiological studies about the risk factors, development of less toxic medications and preservatives, as well as new techniques for less invasive eye surgeries. Novel research into detection of early dry eye prior to surgeries, efforts to establish appropriate therapeutics and a greater attempt to regulate and oversee medications, preservatives and procedures should be considered.

278 citations

Journal ArticleDOI
TL;DR: Preclinical studies have identified other potential therapeutic targets, biomarkers, and strategies to bolster endogenous immunoregulatory pathways that will, it is hoped, lead to further advances in diagnostic classification and treatment.

251 citations

Journal ArticleDOI
TL;DR: Experimental and clinical studies have evidenced several mechanisms through which elevated UA level exerts deleterious effects on cardiovascular health including increased oxidative stress, reduced availability of nitric oxide and endothelial dysfunction, promotion of local and systemic inflammation, vasoconstriction and proliferation of vascular smooth muscle cells, insulin resistance and metabolic dysregulation.

242 citations