scispace - formally typeset
Search or ask a question
Author

T. Emilia Abraham

Bio: T. Emilia Abraham is an academic researcher from Council of Scientific and Industrial Research. The author has contributed to research in topics: Starch & Ferulic acid. The author has an hindex of 29, co-authored 47 publications receiving 5788 citations. Previous affiliations of T. Emilia Abraham include National Institute for Interdisciplinary Science and Technology & National Institute of Standards and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent and cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginates with other polymers such as neutral gums, chitosan, and eudragit have been found to solve the problem of drug leaching.

1,724 citations

Journal ArticleDOI
TL;DR: The free radical scavenging capacity and antioxidant activities of the methanolic extract of Cinnamomum verum leaf were studied and compared to antioxidant compounds like trolox, butylated hydroxyl anisole, gallic acid and ascorbic acid.

419 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the Cr(VI) biosorption potential of immobilized Rhizopus nigricans and to screen a variety of non-toxic desorbing agents, in order to find out possible application in multiple sorption-desorption cycles.

400 citations

Journal ArticleDOI
TL;DR: Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost, and the dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength.
Abstract: Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.

396 citations

Journal ArticleDOI
TL;DR: In this article, the antioxidant properties of Cinnamomum verum barks (CBE) were evaluated with reference to antioxidant compounds like butylated hydroxyl anisole, trolox and ascorbic acid.

332 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.

5,372 citations

Journal ArticleDOI
TL;DR: This review summarizes the main advances published over the last 15 years, outlining the synthesis, biodegradability and biomedical applications ofBiodegradable synthetic and natural polymers.

3,801 citations

Journal ArticleDOI
TL;DR: The newest developments in chitosan hydrogel preparation are investigated and the design parameters in the development of physically and chemically cross-linked hydrogels are defined.

2,034 citations

Journal ArticleDOI
TL;DR: An overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented and emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
Abstract: In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

2,013 citations

Journal ArticleDOI
TL;DR: Different methods for the immobilization of enzymes are critically reviewed, with emphasis on relatively recent developments, such as the use of novel supports, e.g., mesoporous silicas, hydrogels, and smart polymers, novel entrapment methods and cross-linked enzyme aggregates (CLEAs).
Abstract: Immobilization is often the key to optimizing the operational performance of an enzyme in industrial processes, particularly for use in non-aqueous media. Different methods for the immobilization of enzymes are critically reviewed. The methods are divided into three main categories, viz. (i) binding to a prefabricated support (carrier), (ii) entrapment in organic or inorganic polymer matrices, and (iii) cross-linking of enzyme molecules. Emphasis is placed on relatively recent developments, such as the use of novel supports, e.g., mesoporous silicas, hydrogels, and smart polymers, novel entrapment methods and cross-linked enzyme aggregates (CLEAs).

1,857 citations