scispace - formally typeset
Search or ask a question
Author

T. Esirkepov

Bio: T. Esirkepov is an academic researcher from Moscow Institute of Physics and Technology. The author has contributed to research in topics: Laser & Pulse (physics). The author has an hindex of 12, co-authored 21 publications receiving 1467 citations.
Topics: Laser, Pulse (physics), Plasma, Ion, Electron

Papers
More filters
Journal ArticleDOI
TL;DR: An intense laser-plasma interaction regime of the generation of high density ultrashort relativistic ion beams is suggested and it is suggested that the laser energy is transformed efficiently into the energy of fast ions.
Abstract: An intense laser-plasma interaction regime of the generation of high density ultrashort relativistic ion beams is suggested. When the radiation pressure is dominant, the laser energy is transformed efficiently into the energy of fast ions.

951 citations

Journal ArticleDOI
TL;DR: The multiparametric particle-in-cell simulations demonstrate that the main pulse generates the quasistatic magnetic field, which in its turn produces the long-lived charge separation electrostatic field, accelerating the ions.
Abstract: With detailed experimental studies and hydrodynamics and particle-in-cell simulations we investigate the role of the prepulse in laser proton acceleration. The prepulse or pedestal (amplified spontaneous emission) can completely evaporate the irradiated region of a sufficiently thin foil; therefore, the main part of the laser pulse interacts with an underdense plasma. The multiparametric particle-in-cell simulations demonstrate that the main pulse generates the quasistatic magnetic field, which in its turn produces the long-lived charge separation electrostatic field, accelerating the ions.

133 citations

Journal ArticleDOI
TL;DR: Two-dimensional particle in cell simulations show that the laser pulse drills a channel through an underdense plasma slab due to relativistic self-focusing, where ions and electrons are accelerated in the head region of the channel.
Abstract: Under optimal interaction conditions ions can be accelerated up to relativistic energies by a petawatt laser pulse in both underdense and overdense plasmas. Two-dimensional particle in cell simulations show that the laser pulse drills a channel through an underdense plasma slab due to relativistic self-focusing. Both ions and electrons are accelerated in the head region of the channel. However, ion acceleration is more effective at the end of the slab. Here electrons from the channel expand in vacuum and are followed by the ions dragged by the Coulomb force arising from charge separation. A similar mechanism of ion acceleration occurs when a superintense laser pulse interacts with a thin slab of overdense plasma and the pulse ponderomotive pressure moves all the electrons away from a finite-diameter spot.

112 citations

Journal ArticleDOI
TL;DR: In this paper, the Taylor's problem for forced magnetic reconnection in electron magnetohydrodynamics (EMHD) has been investigated and a broad class of solutions that describe stationary reconnection have been found.
Abstract: The forced reconnection of magnetic field lines within the framework of electron magnetohydrodynamics (EMHD) has been investigated. A broad class of solutions that describe stationary reconnection have been found. The time evolution of the plasma and of the magnetic field when perturbations are imposed from the boundary of a high conductivity plasma slab are also studied. The initial magnetic field has a null surface. Following this discussion, the so-called Taylor’s problem for EMHD in which the perturbations cause a change in the topology of the magnetic field has been solved. The plasma and the magnetic field are seen to evolve with the time scale of the linear tearing mode. Their time evolution is described by exponential dependences. Analytic and numerical simulation results of the nonlinear regime of forced magnetic reconnection in EMHD are also presented. Finally, the above results are compared with a case where the reconnection is mediated by dissipative electron viscosity effects.

59 citations


Cited by
More filters
01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields is presented.
Abstract: The field of laser-matter interaction traditionally deals with the response of atoms, molecules, and plasmas to an external light wave. However, the recent sustained technological progress is opening up the possibility of employing intense laser radiation to trigger or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding ${10}^{22}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum, and can trigger the creation of particles such as electrons, muons, and pions and their corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and may even allow for the potential discovery of new particles beyond the standard model. These are the main topics of this article, which is devoted to a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields.

1,394 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives are given in this article. But the main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.
Abstract: Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the applicative potential and in the perspective to investigate novel regimes as available laser intensities will be increasing. Experiments have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance, and low emittance. An overview is given of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. The main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.

1,221 citations