scispace - formally typeset
Search or ask a question
Author

T. F. M. Champion

Bio: T. F. M. Champion is an academic researcher from University of Oxford. The author has contributed to research in topics: Quantum technology & Photonics. The author has an hindex of 12, co-authored 21 publications receiving 1042 citations.

Papers
More filters
Journal ArticleDOI
02 Dec 2011-Science
TL;DR: This work generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature and showed that the quantum state of the diamonds has positive concurrence with 98% probability.
Abstract: Quantum entanglement in the motion of macroscopic solid bodies has implications both for quantum technologies and foundational studies of the boundary between the quantum and classical worlds. Entanglement is usually fragile in room-temperature solids, owing to strong interactions both internally and with the noisy environment. We generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature. By measuring strong nonclassical correlations between Raman-scattered photons, we showed that the quantum state of the diamonds has positive concurrence with 98% probability. Our results show that entanglement can persist in the classical context of moving macroscopic solids in ambient conditions.

358 citations

Journal ArticleDOI
TL;DR: In this article, an optical memory is demonstrated in a kagome photonic crystal fiber whose 26-μm-diameter hollow core is loaded with cesium atoms, and Gigahertz-bandwidth light is stored using a far-detuned Raman interaction.
Abstract: An optical memory is demonstrated in a kagome photonic crystal fibre whose 26-μm-diameter hollow core is loaded with cesium atoms. Gigahertz-bandwidth light is stored using a far-detuned Raman interaction. It has a memory efficiency is 27 ± 1% and a signal-to-noise ratio of 2.6:1 — the highest at the single-photon level of any memory at room temperature.

162 citations

Journal ArticleDOI
TL;DR: Here, it is shown how the production rates of quantum memories for producing multiphoton states can be enhanced by many orders of magnitude, with the quantity ηB as the most important figure of merit in this connection.
Abstract: Single photons are a vital resource for optical quantum information processing. Efficient and deterministic single photon sources do not yet exist, however. To date, experimental demonstrations of quantum processing primitives have been implemented using nondeterministic sources combined with heralding and/or postselection. Unfortunately, even for eight photons, the data rates are already so low as to make most experiments impracticable. It is well known that quantum memories, capable of storing photons until they are needed, are a potential solution to this ``scaling catastrophe.'' Here, we analyze in detail the benefits of quantum memories for producing multiphoton states, showing how the production rates can be enhanced by many orders of magnitude. We identify the quantity $\ensuremath{\eta}B$ as the most important figure of merit in this connection, where $\ensuremath{\eta}$ and $B$ are the efficiency and time-bandwidth product of the memories, respectively.

143 citations

Journal ArticleDOI
06 May 2012
TL;DR: An optical quantum memory with multiple pulses is addressed, enabling unit efficiency readout and programmable beam splitting and the resulting coherent processor with built-in storage is universal for scalable photonic quantum information processing.
Abstract: We address an optical quantum memory with multiple pulses, enabling unit efficiency readout and programmable beam splitting The resulting coherent processor with built-in storage is universal for scalable photonic quantum information processing

105 citations

Journal ArticleDOI
03 Mar 2016
TL;DR: A demonstration of a cavity-enhanced Raman memory is presented, showing suppression of four-wave mixing in quantum memories.
Abstract: Quantum memories enable the synchronisation of photonic operations. Raman memories are a promising platform, but are susceptible to four-wave mixing noise. We present a demonstration of a cavity-enhanced Raman memory, showing suppression of four-wave mixing.

91 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: A quantum boson-sampling machine (QBSM) is constructed to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically.
Abstract: Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.

862 citations

Journal ArticleDOI
06 Aug 2009-Nature
TL;DR: The observation of optomechanical normal mode splitting is reported, which provides unambiguous evidence for strong coupling of cavity photons to a mechanical resonator, which paves the way towards full quantum optical control of nano- and micromechanical devices.
Abstract: Achieving coherent quantum control over massive mechanical resonators is a current research goal. Nano- and micromechanical devices can be coupled to a variety of systems, for example to single electrons by electrostatic or magnetic coupling, and to photons by radiation pressure or optical dipole forces. So far, all such experiments have operated in a regime of weak coupling, in which reversible energy exchange between the mechanical device and its coupled partner is suppressed by fast decoherence of the individual systems to their local environments. Controlled quantum experiments are in principle not possible in such a regime, but instead require strong coupling. So far, this has been demonstrated only between microscopic quantum systems, such as atoms and photons (in the context of cavity quantum electrodynamics) or solid state qubits and photons. Strong coupling is an essential requirement for the preparation of mechanical quantum states, such as squeezed or entangled states, and also for using mechanical resonators in the context of quantum information processing, for example, as quantum transducers. Here we report the observation of optomechanical normal mode splitting, which provides unambiguous evidence for strong coupling of cavity photons to a mechanical resonator. This paves the way towards full quantum optical control of nano- and micromechanical devices.

848 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon and project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.
Abstract: Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.

696 citations