scispace - formally typeset
Search or ask a question
Author

T.G. Satheesh Babu

Bio: T.G. Satheesh Babu is an academic researcher from Amrita Vishwa Vidyapeetham. The author has contributed to research in topics: Ascorbic acid & Blood serum. The author has an hindex of 13, co-authored 53 publications receiving 549 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a non-enzymatic electrochemical sensor for the detection of glucose in alkaline medium was fabricated by electrochemical anodisation of copper electrodes in potassium oxalate solution.

78 citations

Journal ArticleDOI
TL;DR: A disposable nonenzymatic sensor for creatinine was developed by electrodepositing copper on screen printed carbon electrodes as mentioned in this paper, which showed a detection limit of 0.0746μM with a linear range of 6-378μΜ.
Abstract: A disposable non-enzymatic sensor for creatinine was developed by electrodepositing copper on screen printed carbon electrodes. The sensor was characterized using electrochemical and microscopic techniques. Electrochemical detection of creatinine was carried out in phosphate buffer solution of pH 7.4. The estimation was based on the formation of soluble copper-creatinine complex. The formation of copper-creatinine complex was established using the pseudoperoxidase activity of copper-creatinine complex. The sensor showed a detection limit of 0.0746 μM with a linear range of 6–378 μΜ. The sensor exhibited a stable response to creatinine and found to be free from interference from molecules like urea, glucose, ascorbic acid and dopamine. Real sample analysis was carried out with blood serum.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a nonenzymatic electrochemical glucose sensor was fabricated using gold-copper oxide nanoparticles decorated reduced graphene oxide (Au-CuO/rGO).

62 citations

Journal ArticleDOI
TL;DR: In this paper, a nonenzymatic sensor was developed for the determination of glucose in alkaline medium by anodisation of copper in sodium potassium tartrate solution, which enabled direct electrocatalytic oxidation of glucose on a CuO/Cu electrode at 0.7 V in 0.1 M sodium hydroxide.
Abstract: A non-enzymatic sensor was developed for the determination of glucose in alkaline medium by anodisation of copper in sodium potassium tartrate solution. The morphology of the modified copper electrode was studied by scanning electron microscopy, and its electrochemical behavior by cyclic voltammetry and electrochemical impedance spectroscopy. The electrode enables direct electrocatalytic oxidation of glucose on a CuO/Cu electrode at 0.7 V in 0.1 M sodium hydroxide. At this potential, the sensor is highly selective to glucose even in the presence of ascorbic acid, uric acid, or dopamine which are common interfering species. The sensor displays a sensitivity of 761.9 μA mM−1 cm−2, a linear detection range from 2 μM to 20 mM, a response time of <1 s, and a detection limit of 1 μM (S/N = 3). It was tested for determination of glucose level in blood serum.

62 citations

Journal ArticleDOI
TL;DR: A nonenzymatic glucose sensor was fabricated by electrodepositing cobalt rich cobalt-copper alloy nanoparticles (Co-CuNPs) on vertically aligned TiO2 nanotube (TDNT) arrays.
Abstract: A nonenzymatic glucose sensor was fabricated by electrodepositing cobalt rich cobalt–copper alloy nanoparticles (Co–CuNPs) on vertically aligned TiO2 nanotube (TDNT) arrays. For this, TDNT arrays with tube diameter of 60 nm were synthesized by electrochemical anodization. The composition of the electrodeposited alloy was optimized based on the electrocatalytic activity towards glucose oxidation. This is achieved by controlling the concentration of electrolyte and time of deposition. Chemical composition of the optimized Co–Cu alloy nanoparticles is determined to be Cu0.15Co2.84O4 with fcc crystalline structure. The sensor showed two linear range of detection with high sensitivity of 4651.0 μA mM−1 cm−2 up to 5 mM and 2581.70 μA mM−1 cm−2 from 5 mM to 12 mM with a lower detection limit of 0.6 μM (S/N = 3). The sensor is highly selective to glucose in the presence of various exogeneous and endogeneous interfering species and other sugars. The response of the sensor towards blood serum was in good agreement with that of commercially available glucose sensors.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The utility of nanomaterials, which are currently being studied for in vivo and in vitro medical applications as robust and tunable diagnostic and therapeutic platforms, is highlighted.
Abstract: A growing variety of sensors have increasingly significant impacts on everyday life. Key issues to take into consideration toward the integration of biosensing platforms include the demand for minimal costs and the potential for real time monitoring, particularly for point-of-care applications where simplicity must also be considered. In light of these developmental factors, electrochemical approaches are the most promising candidate technologies due to their simplicity, high sensitivity and specificity. The primary focus of this review is to highlight the utility of nanomaterials, which are currently being studied for in vivo and in vitro medical applications as robust and tunable diagnostic and therapeutic platforms. Highly sensitive and precise nanomaterials based biosensors have opened up the possibility of creating novel technologies for the early-stage detection and diagnosis of disease related biomarkers. The attractive properties of nanomaterials have paved the way for the fabrication of a wide range of electrochemical sensors that exhibit improved analytical capacities. This review aims to provide insights into nanomaterials based electrochemical sensors and to illustrate their benefits in various key biomedical applications. This emerging discipline, at the interface of chemistry and the life sciences, offers a broad palette of opportunities for researchers with interests that encompass nanomaterials synthesis, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.

695 citations

Journal ArticleDOI
TL;DR: In this review, the most recent advances in nonenzymatic glucose sensors are visited, with the focus being on the last five years of research.

456 citations

Journal ArticleDOI
TL;DR: Graphene and its oxygenated derivatives, including reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the field of biosensors as discussed by the authors, and the discovery of graphene has spectacularly accelerated research on fabricating low-cost electrode materials because of its unique physical properties, including high specific surface area, high carrier mobility, high electrical conductivity, flexibility.
Abstract: Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters. Over the last decade, different nanomaterials have been exploited to design highly efficient biosensors for the detection of analyte biomolecules. The discovery of graphene has spectacularly accelerated research on fabricating low-cost electrode materials because of its unique physical properties, including high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency. Graphene and its oxygenated derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the field of biosensors. The presence of oxygenated functional groups makes GO nanosheets strongly hydrophilic, facilitating chemical functionalization. Graphene, GO and rGO nanosheets can be easily combined with various types of inorganic nanoparticles, including metals, metal oxides, semiconducting nanoparticles, quantum dots, organic polymers and biomolecules, to create a diverse range of graphene-based nanocomposites with enhanced sensitivity for biosensor applications. This review summarizes the advances in two-dimensional (2D) and three-dimensional (3D) graphene-based nanocomposites as emerging electrochemical and fluorescent biosensing platforms for the detection of a wide range of biomolecules with enhanced sensitivity, selectivity and a low limit of detection. The biofunctionalization and nanocomposite formation processes of graphene-based materials and their unique properties, surface functionalization, enzyme immobilization strategies, covalent immobilization, physical adsorption, biointeractions and direct electron transfer (DET) processes are discussed in connection with the design and fabrication of biosensors. The enzymatic and nonenzymatic reactions on graphene-based nanocomposite surfaces for glucose- and cholesterol-related electrochemical biosensors are analyzed. This review covers a very broad range of graphene-based electrochemical and fluorescent biosensors for the detection of glucose, cholesterol, hydrogen peroxide (H2O2), nucleic acids (DNA/RNA), genes, enzymes, cofactors nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), dopamine (DA), ascorbic acid (AA), uric acid (UA), cancer biomarkers, pathogenic microorganisms, food toxins, toxic heavy metal ions, mycotoxins, and pesticides. The sensitivity and selectivity of graphene-based electrochemical and fluorescent biosensors are also examined with respect to interfering analytes present in biological systems. Finally, the future outlook for the development of graphene based biosensing technology is outlined.

454 citations

Journal ArticleDOI
TL;DR: A review of the interdisciplinary efforts to better understand the design principles for products with honeycomb structures, including their fabrication, performance (e.g., mechanical, thermal and acoustic properties) as well as optimization design is presented in this article.

451 citations

Journal ArticleDOI
TL;DR: In this paper, the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose is reviewed, followed by a brief discussion of the merits and limitations of enzymatic glucose sensors.
Abstract: This article reviews the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose. Following a brief discussion of the merits and limitations of enzymatic glucose sensors, we discuss the history of unraveling the mechanism of direct oxidation of glucose and theories of non-enzymatic electrocatalysis. We then review non-enzymatic glucose electrodes based on the use of the metals platinum, gold, nickel, copper, of alloys and bimetals, of carbon materials (including graphene and graphene-based composites), and of metal-metal oxides and layered double hydroxides. This review contains more than 200 refs.

419 citations