scispace - formally typeset
Search or ask a question
Author

T. Gamble

Other affiliations: University of London
Bio: T. Gamble is an academic researcher from University of Sheffield. The author has contributed to research in topics: Dark matter & WIMP. The author has an hindex of 5, co-authored 7 publications receiving 427 citations. Previous affiliations of T. Gamble include University of London.
Topics: Dark matter, WIMP, Detector, Axion, Neutron

Papers
More filters
Journal ArticleDOI
S. P. Ahlen1, Niayesh Afshordi2, Niayesh Afshordi3, James Battat4, J. Billard5, Nassim Bozorgnia6, S. Burgos7, T. Caldwell8, T. Caldwell4, J. M. Carmona9, S. Cebrián9, P. Colas, T. Dafni9, E. J. Daw10, D. Dujmic4, A. Dushkin11, William Fedus4, Efrain J. Ferrer, D. Finkbeiner12, Peter H. Fisher4, J. Forbes7, T. Fusayasu13, J. Galán9, T. Gamble10, C. Ghag14, Ioannis Giomataris, Michael Gold15, Haley Louise Gomez9, M. E. Gomez16, Paolo Gondolo17, Anne M. Green18, C. Grignon5, O. Guillaudin5, C. Hagemann15, Kaori Hattori19, Shawn Wesley Henderson4, N. Higashi19, C. Ida19, F.J. Iguaz9, Andrew Inglis1, I. G. Irastorza9, Satoru Iwaki19, A. C. Kaboth4, Shigeto Kabuki19, J. Kadyk20, Nitya Kallivayalil4, H. Kubo19, Shunsuke Kurosawa19, V. A. Kudryavtsev10, T. Lamy5, Richard C. Lanza4, T. B. Lawson10, A. Lee4, E. R. Lee15, T. Lin12, D. Loomba15, Jeremy Lopez4, G. Luzón9, T. Manobu, J. Martoff21, F. Mayet5, B. Mccluskey10, E. H. Miller15, Kentaro Miuchi19, Jocelyn Monroe4, B. Morgan22, D. Muna23, A. St. J. Murphy14, Tatsuhiro Naka24, K. Nakamura19, M. Nakamura24, T. Nakano24, G.G. Nicklin10, H. Nishimura19, K. Niwa24, Sean Paling10, Joseph D. Parker19, A. Petkov7, M. Pipe10, K. Pushkin7, Matthew R. Robinson10, Arturo Rodriguez Rodriguez9, Jose Rodríguez-Quintero16, T. Sahin4, Robyn E. Sanderson4, N. Sanghi15, D. Santos5, O. Sato24, Tatsuya Sawano19, G. Sciolla4, Hiroyuki Sekiya25, Tracy R. Slatyer12, D. P. Snowden-Ifft7, N. J. C. Spooner10, A. Sugiyama26, A. Takada, M. Takahashi19, A. Takeda25, Toru Tanimori19, Kojiro Taniue19, A. Tomás9, H. Tomita1, K. Tsuchiya19, J. Turk15, E. Tziaferi10, K. Ueno19, S. E. Vahsen20, R. Vanderspek4, J D Vergados27, J.A. Villar9, H. Wellenstein11, I. Wolfe4, R. K. Yamamoto4, H. Yegoryan4 
TL;DR: The case for a dark matter detector with directional sensitivity was presented at the 2009 CYGNUS workshop on directional dark matter detection, and contributions from theorists and experimental groups in the field as mentioned in this paper.
Abstract: We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M.

224 citations

Journal ArticleDOI
S. P. Ahlen1, Niayesh Afshordi2, Niayesh Afshordi3, James Battat4, J. Billard5, Nassim Bozorgnia6, S. Burgos7, T. Caldwell8, T. Caldwell4, J. M. Carmona9, S. Cebrián9, P. Colas, T. Dafni9, E. J. Daw10, D. Dujmic4, A. Dushkin11, William Fedus4, Efrain J. Ferrer, D. Finkbeiner12, Peter H. Fisher4, J. Forbes7, T. Fusayasu13, J. Galán9, T. Gamble10, C. Ghag14, Ioannis Giomataris, Michael Gold15, Haley Louise Gomez9, M. E. Gomez16, Paolo Gondolo17, Anne M. Green18, C. Grignon5, O. Guillaudin5, C. Hagemann15, Kaori Hattori19, Shawn Wesley Henderson4, N. Higashi19, C. Ida19, F.J. Iguaz9, Andrew Inglis1, I. G. Irastorza9, Satoru Iwaki19, A. C. Kaboth4, Shigeto Kabuki19, J. Kadyk20, Nitya Kallivayalil4, H. Kubo19, Shunsuke Kurosawa19, V. A. Kudryavtsev10, T. Lamy5, Richard C. Lanza4, T. B. Lawson10, A. Lee4, E. R. Lee15, T. Lin12, D. Loomba15, Jeremy Lopez4, G. Luzón9, T. Manobu, J. Martoff21, F. Mayet5, B. Mccluskey10, E. H. Miller15, Kentaro Miuchi19, Jocelyn Monroe4, B. Morgan22, D. Muna23, A. St. J. Murphy14, Tatsuhiro Naka24, K. Nakamura19, M. Nakamura24, T. Nakano24, G.G. Nicklin10, H. Nishimura19, K. Niwa24, Sean Paling10, Joseph D. Parker19, A. Petkov7, M. Pipe10, K. Pushkin7, Matthew R. Robinson10, Arturo Rodriguez Rodriguez9, Jose Rodríguez-Quintero16, T. Sahin4, Robyn E. Sanderson4, N. Sanghi15, D. Santos5, O. Sato24, Tatsuya Sawano19, G. Sciolla4, Hiroyuki Sekiya25, Tracy R. Slatyer12, D. P. Snowden-Ifft7, N. J. C. Spooner10, A. Sugiyama26, A. Takada, M. Takahashi19, A. Takeda25, Toru Tanimori19, Kojiro Taniue19, A. Tomás9, H. Tomita1, K. Tsuchiya19, J. Turk15, E. Tziaferi10, K. Ueno19, S. E. Vahsen20, R. Vanderspek4, J D Vergados27, J.A. Villar9, H. Wellenstein11, I. Wolfe4, R. K. Yamamoto4, H. Yegoryan4 
TL;DR: The case for a dark matter detector with directional sensitivity was presented at the 2009 CYGNUS workshop on directional dark matter detection, and contributions from theorists and experimental groups in the field as mentioned in this paper.
Abstract: We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The theory and experimental implications of the soft supersymmetry-breaking Lagrangian of the general minimal supersymmetric standard model (MSSM) are discussed in this article.

525 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the phenomenology of models with flat, compactified extra dimensions where all of the Standard Model fields are allowed to propagate in the bulk, known as Universal Extra Dimensions (UED).

426 citations

Journal ArticleDOI
TL;DR: In this paper, the status of direct dark matter searches is summarized, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale.
Abstract: In recent decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.

395 citations

Journal ArticleDOI
TL;DR: A review of the physics of direct detection of dark matter, discussing the roles of both the particle physics and astrophysics in the expected signals, is given in this article, where the authors discuss the practical formulas needed to interpret a modulating signal.
Abstract: Direct detection experiments, which are designed to detect the scattering of dark matter off nuclei in detectors, are a critical component in the search for the Universe’s missing matter. This Colloquium begins with a review of the physics of direct detection of dark matter, discussing the roles of both the particle physics and astrophysics in the expected signals. The count rate in these experiments should experience an annual modulation due to the relative motion of the Earth around the Sun. This modulation, not present for most known background sources, is critical for solidifying the origin of a potential signal as dark matter. The focus is on the physics of annual modulation, discussing the practical formulas needed to interpret a modulating signal. The dependence of the modulation spectrum on the particle and astrophysics models for the dark matter is illustrated. For standard assumptions, the count rate has a cosine dependence with time, with a maximum in June and a minimum in December. Well-motivated generalizations of these models, however, can affect both the phase and amplitude of the modulation. Shown is how a measurement of an annually modulating signal could teach us about the presence of substructure in the galactic halo or about the interactions between dark and baryonic matter. Although primarily a theoretical review, the current experimental situation for annual modulation and future experimental directions is briefly discussed.

366 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments.

347 citations