scispace - formally typeset
Search or ask a question
Author

T. H. Mokhothu

Bio: T. H. Mokhothu is an academic researcher from Durban University of Technology. The author has contributed to research in topics: Natural rubber & Thermogravimetric analysis. The author has an hindex of 10, co-authored 22 publications receiving 426 citations. Previous affiliations of T. H. Mokhothu include Council of Scientific and Industrial Research & University of Zululand.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors cover recent developments from 2013-up to date on hybrid composites, based on natural fibers with other fillers, and the current challenges are also presented.
Abstract: Natural fibers, as replacement of engineered fibers, have been one of the most researched topics over the past years. This is due to their inherent properties, such as biodegradability, renewability and their abundant availability when compared to synthetic fibers. Synthetic fibers derived from finite resources (fossil fuels) and are thus, affected mainly by volatility oil prices and their accumulation in the environment and/or landfill sites as main drawbacks their mechanical properties and thermal properties surpass that of natural fibers. A combination of these fibers/fillers, as reinforcement of various polymeric materials, offers new opportunities to produce multifunctional materials and structures for advanced applications. This article intends to cover recent developments from 2013-up to date on hybrid composites, based on natural fibers with other fillers. Hybrid composites preparation and characterization towards their applicability in advanced applications and the current challenges are also presented.

242 citations

Journal ArticleDOI
TL;DR: This review addresses a comprehensive survey on hygroscopic factors affecting natural fibres and their performance as reinforcement in polymer composites and addresses the progress in the development of superhydrophobic materials based on cellulose material for better moisture resistance.

133 citations

Journal ArticleDOI
TL;DR: In this article, an in situ sol-gel process with tetraethoxysilane (TEOS) as a precursor and bis-[-3-(triethoxyilyl)-propyl]-tetrasulfide (TESPT) as coupling agent was used to enhance the rubber-silica interactions.

42 citations

Journal ArticleDOI
TL;DR: In this article, the mechanical, thermal and electrical properties of chicken feathers were determined and evaluated to ascertain suitability of the feathers for production of high-value materials, such as electrical insulator materials, yarn production for use in textiles, nonwoven fabric production, filler for winter clothing, geotextile and construction materials.

38 citations

Journal ArticleDOI
TL;DR: PFA coated samples showed better moisture resistance and mechanical performance than other bio-based coatings when subjected to long term environmental aging.
Abstract: In this study, bio-based coatings were used for reducing water sorption of composites containing flame retardant treated natural fibres and phenolic resin. Two types of coatings; polyfurfuryl alcohol resin (PFA) and polyurethane (PU) were used on the composites and compared with a water resistant market product. Uncoated and coated samples were conditioned at 90 °C and relative humidity of 90% for three days and the relative moisture content and mechanical properties after conditioning were analysed. In addition, the changes in the weight loss of the conditioned samples were also investigated by thermogravimetric analysis. The moisture diffusion characteristics of coated laminates were also studied at room temperature under water immersion conditions. PFA coated samples showed better moisture resistance and mechanical performance than other bio-based coatings when subjected to long term environmental aging.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: With worldwide efforts, innovations in chemistry and materials elaborated in this review will push forward the frontiers of smart textiles, which will soon revolutionize the authors' lives in the era of Internet of Things.
Abstract: Textiles have been concomitant of human civilization for thousands of years. With the advances in chemistry and materials, integrating textiles with energy harvesters will provide a sustainable, environmentally friendly, pervasive, and wearable energy solution for distributed on-body electronics in the era of Internet of Things. This article comprehensively and thoughtfully reviews research activities regarding the utilization of smart textiles for harvesting energy from renewable energy sources on the human body and its surroundings. Specifically, we start with a brief introduction to contextualize the significance of smart textiles in light of the emerging energy crisis, environmental pollution, and public health. Next, we systematically review smart textiles according to their abilities to harvest biomechanical energy, body heat energy, biochemical energy, solar energy as well as hybrid forms of energy. Finally, we provide a critical analysis of smart textiles and insights into remaining challenges and future directions. With worldwide efforts, innovations in chemistry and materials elaborated in this review will push forward the frontiers of smart textiles, which will soon revolutionize our lives in the era of Internet of Things.

536 citations

Journal ArticleDOI
TL;DR: The increasing demand for new food packaging materials which satisfy people requirements provided thrust for advancement of nano-materials science as discussed by the authors, and the increasing need for new packaging materials with high barrier and barrier properties has driven the research and development in polymeric materials coupled with appropriate filler, matrix-filler interaction and new formulation strategies.

492 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have reviewed the different sources of natural fibers, their properties, modification of natural fiber, the effect of treatments on natural fibers and their effective use as reinforcement for polymer composite materials.
Abstract: The increase in awareness of the damage caused by synthetic materials on the environment has led to the development of eco-friendly materials. The researchers have shown a lot of interest in developing such materials which can replace the synthetic materials. As a result, there is an increase in demand for commercial use of the natural fiber-based composites in recent years for various industrial sectors. Natural fibers are sustainable materials which are easily available in nature and have advantages like low-cost, lightweight, renewability, biodegradability and high specific properties. The sustainability of the natural fiber-based composite materials has led to upsurge its applications in various manufacturing sectors. In this paper, we have reviewed the different sources of natural fibers, their properties, modification of natural fibers, the effect of treatments on natural fibers, etc. We also summarize the major applications of natural fibers and their effective use as reinforcement for polymer composite materials.

441 citations

Journal ArticleDOI
TL;DR: In this paper, the authors cover recent developments from 2013-up to date on hybrid composites, based on natural fibers with other fillers, and the current challenges are also presented.
Abstract: Natural fibers, as replacement of engineered fibers, have been one of the most researched topics over the past years. This is due to their inherent properties, such as biodegradability, renewability and their abundant availability when compared to synthetic fibers. Synthetic fibers derived from finite resources (fossil fuels) and are thus, affected mainly by volatility oil prices and their accumulation in the environment and/or landfill sites as main drawbacks their mechanical properties and thermal properties surpass that of natural fibers. A combination of these fibers/fillers, as reinforcement of various polymeric materials, offers new opportunities to produce multifunctional materials and structures for advanced applications. This article intends to cover recent developments from 2013-up to date on hybrid composites, based on natural fibers with other fillers. Hybrid composites preparation and characterization towards their applicability in advanced applications and the current challenges are also presented.

242 citations

Journal ArticleDOI
TL;DR: This review deals with the various techniques which can be used for the extraction of hemicellulose from biomass residues, purification and some potential applications of the extracted hemiceLLulose.

229 citations