scispace - formally typeset
Search or ask a question
Author

T.-H. V. Kármán

Bio: T.-H. V. Kármán is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 1806 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed to represent the mean-velocity profile by a linear combination of two universal functions, namely the law of the wall and the wake, and compared the results with experimental data.
Abstract: After an extensive survey of mean-velocity profile measurements in various two-dimensional incompressible turbulent boundary-layer flows, it is proposed to represent the profile by a linear combination of two universal functions. One is the well-known law of the wall. The other, called the law of the wake, is characterized by the profile at a point of separation or reattachment. These functions are considered to be established empirically, by a study of the mean-velocity profile, without reference to any hypothetical mechanism of turbulence. Using the resulting complete analytic representation for the mean-velocity field, the shearing-stress field for several flows is computed from the boundary-layer equations and compared with experimental data. The development of a turbulent boundary layer is ultimately interpreted in terms of an equivalent wake profile, which supposedly represents the large-eddy structure and is a consequence of the constraint provided by inertia. This equivalent wake profile is modified by the presence of a wall, at which a further constraint is provided by viscosity. The wall constraint, although it penetrates the entire boundary layer, is manifested chiefly in the sublayer flow and in the logarithmic profile near the wall. Finally, it is suggested that yawed or three-dimensional flows may be usefully represented by the same two universal functions, considered as vector rather than scalar quantities. If the wall component is defined to be in the direction of the surface shearing stress, then the wake component, at least in the few cases studied, is found to be very nearly parallel to the gradient of the pressure.

1,574 citations

Book
01 Jan 1972
TL;DR: In this article, the method of Weighted Residuals is used to solve boundary-value problems in heat and mass transfer problems, and convergence and error bounds are established.
Abstract: Preface to the classics edition Preface Acknowledgments Part I. The Method of Weighted Residuals: 1. Introduction 2. Boundary-value problems in heat and mass transfer 3. Eigenvalue and initial-value problems in heat and mass transfer 4. Applications to fluid mechanics 5. Chemical reaction systems 6. Convective instability problems Part II. Variational Principles: 7. Introduction to variational principles 8. Variational principles in fluid mechanics 9. Variational principles for heat and mass transfer problems 10. On the search for variational principles 11. Convergence and error bounds Author index Subject index.

1,367 citations

Journal ArticleDOI
Ronald G. Larson1
TL;DR: In this article, the authors present a review of the latest developments as well as earlier work in this area, organized into the following categories: Taylor-Couette flows, instabilities in cone and plate-and-plate flows, parallel shear flows, extrudate distortions and fracture, Instabilities in shear flow with interfaces, extensional flows, and thermohydrodynamic instabilities.
Abstract: Viscoelastic instabilities are of practical importance, and are the subject of growing interest. Reviewed here are the fresh developments as well as earlier work in this area, organized into the following categories: instabilities in Taylor-Couette flows, instabilities in cone-and-plate and plate-and-plate flows, instabilities in parallel shear flows, extrudate distortions and fracture, instabilities in shear flows with interfaces, instabilities in extensional flows, instabilities in multidimensional flows, and thermohydrodynamic instabilities. Emphasized in the review are comparisons between theory and experiment and suggested directions for future work.

883 citations

Book
29 Oct 2003
TL;DR: In this paper, the authors present a general framework for nonlinear Equations of Mathematical Physics using a general form of the form wxy=F(x,y,w, w, wx, wy) wxy.
Abstract: SOME NOTATIONS AND REMARKS PARABOLIC EQUATIONS WITH ONE SPACE VARIABLE Equations with Power-Law Nonlinearities Equations with Exponential Nonlinearities Equations with Hyperbolic Nonlinearities Equations with Logarithmic Nonlinearities Equations with Trigonometric Nonlinearities Equations Involving Arbitrary Functions Nonlinear Schrodinger Equations and Related Equations PARABOLIC EQUATIONS WITH TWO OR MORE SPACE VARIABLES Equations with Two Space Variables Involving Power-Law Nonlinearities Equations with Two Space Variables Involving Exponential Nonlinearities Other Equations with Two Space Variables Involving Arbitrary Parameters Equations Involving Arbitrary Functions Equations with Three or More Space Variables Nonlinear Schrodinger Equations HYPERBOLIC EQUATIONS WITH ONE SPACE VARIABLE Equations with Power-Law Nonlinearities Equations with Exponential Nonlinearities Other Equations Involving Arbitrary Parameters Equations Involving Arbitrary Functions Equations of the Form wxy=F(x,y,w, wx, wy ) HYPERBOLIC EQUATIONS WITH TWO OR THREE SPACE VARIABLES Equations with Two Space Variables Involving Power-Law Nonlinearities Equations with Two Space Variables Involving Exponential Nonlinearities Nonlinear Telegraph Equations with Two Space Variables Equations with Two Space Variables Involving Arbitrary Functions Equations with Three Space Variables Involving Arbitrary Parameters Equations with Three Space Variables Involving Arbitrary Functions ELLIPTIC EQUATIONS WITH TWO SPACE VARIABLES Equations with Power-Law Nonlinearities Equations with Exponential Nonlinearities Equations Involving Other Nonlinearities Equations Involving Arbitrary Functions ELLIPTIC EQUATIONS WITH THREE OR MORE SPACE VARIABLES Equations with Three Space Variables Involving Power-Law Nonlinearities Equations with Three Space Variables Involving Exponential Nonlinearities Three-Dimensional Equations Involving Arbitrary Functions Equations with n Independent Variables EQUATIONS INVOLVING MIXED DERIVATIVES AND SOME OTHER EQUATIONS Equations Linear in the Mixed Derivative Equations Quadratic in the Highest Derivatives Bellman Type Equations and Related Equations SECOND-ORDER EQUATIONS OF GENERAL FORM Equations Involving the First Derivative in t Equations Involving Two or More Second Derivatives THIRD-ORDER EQUATIONS Equations Involving the First Derivative in t Equations Involving the Second Derivative in t Hydrodynamic Boundary Layer Equations Equations of Motion of Ideal Fluid (Euler Equations) Other Third-Order Nonlinear Equations FOURTH-ORDER EQUATIONS Equations Involving the First Derivative in t Equations Involving the Second Derivative in t Equations Involving Mixed Derivatives EQUATIONS OF HIGHER ORDERS Equations Involving the First Derivative in t and Linear in the Highest Derivative General Form Equations Involving the First Derivative in t Equations Involving the Second Derivative in t Other Equations SUPPLEMENTS: EXACT METHODS FOR SOLVING NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS Classification of Second-Order Semilinear Partial Differential Equations in Two Independent Variables Transformations of Equations of Mathematical Physics Traveling-Wave Solutions and Self-Similar Solutions. Similarity Methods Method of Generalized Separation of Variables Method of Functional Separation of Variables Generalized Similarity Reductions of Nonlinear Equations Group Analysis Methods Differential Constraints Method Painleve Test for Nonlinear Equations of Mathematical Physics Inverse Scattering Method Conservation Laws Hyperbolic Systems of Quasilinear Equations REFERENCES INDEX

809 citations