scispace - formally typeset
Search or ask a question
Author

T H Wilson

Bio: T H Wilson is an academic researcher from Harvard University. The author has contributed to research in topics: Melibiose & Lactose. The author has an hindex of 16, co-authored 16 publications receiving 1089 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence was consistent with the hypothesis that the same membrane carriers were involved in active transport by control cells and facilitated diffusion by poisoned cells, and the most striking finding was that the addition of metabolic inhibitors reduced the KT of exit about two orders of magnitude, whereas the Kt of entrance remained constant.

390 citations

Journal ArticleDOI
TL;DR: The isolation and deduced amino acid sequence of 70 melibiose carrier mutants with impaired methyl-beta-D-galactopyranoside (TMG) and cation recognition properties is described and a model for such interaction is proposed.

93 citations

Journal ArticleDOI
TL;DR: In this article, Asp-240 was changed to alanine by site-directed mutagenesis, and there was a loss of the ability to accumulate methyl-beta-D-thiogalactopyranoside (TMG), melibiose, or lactose.

82 citations

Journal ArticleDOI
TL;DR: This paper characterizes the topological structure of the melibiose carrier of Escherichia coli based on constraints provided by genetic fusions to the compartment-specific reporter protein alkaline phosphatase to suggest a distinct structural and/or mechanistic advantage associated with the six-loop-six motif.

81 citations

Journal ArticleDOI
TL;DR: The results of this study indicate that the substrate recognition site of the lactose carrier is located within the plane of the lipid bilayer, and a tertiary structure model is proposed that suggests how certain transmembrane segments might be localized relative to one another.
Abstract: The wild-type lactose carrier of Escherichia coli has a poor ability to transport the disaccharide maltose. However, it is possible to select lactose carrier mutants that have an enhanced ability to transport maltose by growing E. coli cells on maltose minimal plates in the presence of isopropyl thiogalactoside (an inducer of the lac operon). We have utilized this approach to isolate 18 independent lactose permease mutants that transport maltose. The relevant DNA sequences have been determined, and all of the mutations were found to be single base pair changes either at triplet 177 or at triplet 236. The nucleotide changes replace alanine-177 with valine or threonine, or tyrosine-236 with phenylalanine, asparagine, serine, or histidine. Transport experiments indicate that all of the mutants have faster maltose transport compared with the wild-type strain. Position 177 mutants retain the ability to transport galactosides, such as lactose and melibiose, at rates similar to the rate of the wild-type strain. In contrast, the position 236 mutants are markedly defective in the ability to transport galactosides. With regard to secondary structure, alanine-177 and tyrosine-236 are located on adjacent hydrophobic segments of the lactose carrier that are predicted to span the membrane. Thus, the results of this study indicate that the substrate recognition site of the lactose carrier is located within the plane of the lipid bilayer. In addition, a tertiary structure model is proposed that suggests how certain transmembrane segments might be localized relative to one another.

72 citations


Cited by
More filters
Journal Article
TL;DR: Evidence is presented substantiating the proposal that an internal tandem gene duplication event gave rise to a primordial MFS protein before divergence of the family members.
Abstract: In 1998 we updated earlier descriptions of the largest family of secondary transport carriers found in living organisms, the major facilitator superfamily (MFS). Seventeen families of transport proteins were shown to comprise this superfamily. We here report expansion of the MFS to include 29 established families as well as five probable families. Structural, functional, and mechanistic features of the constituent permeases are described, and each newly identified family is shown to exhibit specificity for a single class of substrates. Phylogenetic analyses define the evolutionary relationships of the members of each family to each other, and multiple alignments allow definition of family-specific signature sequences as well as all wellconserved sequence motifs. The work described serves to update previous publications and allows extrapolation of structural, functional and mechanistic information obtained with any one member of the superfamily to other members with limitations determined by the degrees of sequence divergence.

1,996 citations

Journal ArticleDOI
TL;DR: The major facilitator superfamily (MFS) is one of the two largest families of membrane transporters found on Earth as discussed by the authors, and all homologous MFS protein sequences in the public databases as of January 1997 were identified on the basis of sequence similarity.
Abstract: The major facilitator superfamily (MFS) is one of the two largest families of membrane transporters found on Earth. It is present ubiquitously in bacteria, archaea, and eukarya and includes members that can function by solute uniport, solute/cation symport, solute/cation antiport and/or solute/solute antiport with inwardly and/or outwardly directed polarity. All homologous MFS protein sequences in the public databases as of January 1997 were identified on the basis of sequence similarity and shown to be homologous. Phylogenetic analyses revealed the occurrence of 17 distinct families within the MFS, each of which generally transports a single class of compounds. Compounds transported by MFS permeases include simple sugars, oligosaccharides, inositols, drugs, amino acids, nucleosides, organophosphate esters, Krebs cycle metabolites, and a large variety of organic and inorganic anions and cations. Protein members of some MFS families are found exclusively in bacteria or in eukaryotes, but others are found in bacteria, archaea, and eukaryotes. All permeases of the MFS possess either 12 or 14 putative or established transmembrane α-helical spanners, and evidence is presented substantiating the proposal that an internal tandem gene duplication event gave rise to a primordial MFS protein prior to divergence of the family members. All 17 families are shown to exhibit the common feature of a well-conserved motif present between transmembrane spanners 2 and 3. The analyses reported serve to characterize one of the largest and most diverse families of transport proteins found in living organisms.

1,740 citations

Journal ArticleDOI
TL;DR: The known protein phosphorylation-related regulatory functions of the PTS are summarized, which shows that the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Abstract: The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.

1,245 citations

Journal ArticleDOI
TL;DR: In this paper, the authors made an experimental study of the cytoplasm of Escherichia coli and used parameters from cells and cell extracts to calculate approximate activity coefficients for the thermodynamic activity of cellular components.

1,148 citations

Journal ArticleDOI
TL;DR: This review provides cross-referencing of well-characterized constituent transporters according to transport mode, energy coupling mechanism, phylogenetic grouping, and substrates transported and the structural features and distribution of recognized family members throughout the living world are evaluated.
Abstract: A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects.

841 citations