scispace - formally typeset
Search or ask a question
Author

T.J. Shepherd

Bio: T.J. Shepherd is an academic researcher from Defence Research Agency. The author has contributed to research in topics: Transverse plane & Polarization (waves). The author has an hindex of 2, co-authored 2 publications receiving 474 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, full 2D photonic bandgaps are demonstrated for all polarisations in structures with refractive index contrast as small as that of silica and air, and a new type of optical fiber based on these structures is proposed.
Abstract: Full 2-D photonic bandgaps are demonstrated for all polarisations in structures with refractive index contrast as small as that of silica and air. They occur for light propagating out of the transverse plane, with a longitudinal component of wave vector. A new type of optical fibre based on these structures is proposed.

472 citations

Journal ArticleDOI
TL;DR: A dielectric quasi-metal that ref lects all propagating light incident from free space is described, showing that common high-index materials with a two-dimensional array of air holes can act in some ways as three-dimensional photonic band-gap structures.
Abstract: By considering waves that propagate out of the transverse plane, we show that common high index materials (eg GaAs) with a 2D array of air holes can act in some ways like a 3D photonic band-gap structure. In particular, we describe a dielectric "quasi-metal" that reflects all propagating light incident from free space.

20 citations


Cited by
More filters
Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal ArticleDOI
TL;DR: The fabrication of a new type of optical waveguide: the photonic crystal fiber that supports a single robust low-loss guided mode over a very broad spectral range of at least 458-1550 nm.
Abstract: We report the fabrication of a new type of optical waveguide: the photonic crystal fiber. It consists of a pure silica core surrounded by a silica-air photonic crystal material with a hexagonal symmetry. The fiber supports a single robust low-loss guided mode over a very broad spectral range of at least 458-1550 nm. Also see errata - http://eprints.soton.ac.uk/78010/

2,991 citations

Journal ArticleDOI
TL;DR: An effective-index model confirms that an all-silica optical fiber made by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes can be single mode for any wavelength.
Abstract: We made an all-silica optical fiber by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes. An effective-index model confirms that such a fiber can be single mode for any wavelength. Its useful single-mode range within the transparency window of silica, although wide, is ultimately bounded by a bend-loss edge at short wavelengths as well as at long wavelengths.

2,905 citations

Journal ArticleDOI
03 Sep 1999-Science
TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Abstract: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated Only certain wavelength bands are confined and guided down the fiber, each band corresponding to the presence of a full two-dimensional band gap in the photonic crystal cladding Single-mode vacuum waveguides have a multitude of potential applications from ultrahigh-power transmission to the guiding of cold atoms

1,935 citations

Journal ArticleDOI
TL;DR: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed.
Abstract: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed

1,488 citations