scispace - formally typeset
Search or ask a question
Author

T Kärnä

Bio: T Kärnä is an academic researcher from VTT Technical Research Centre of Finland. The author has contributed to research in topics: Magnetorheological fluid & Magnetorheological elastomer. The author has an hindex of 1, co-authored 1 publications receiving 148 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of aligned and isotropic magnetorheological elastomer composites were tested in cyclic compression passively and with increasing magnetic flux density.
Abstract: Magnetorheological elastomers (MRE) are interesting candidates for active vibration control of structural systems. In this study, spring elements consisting of magnetorheological elastomer were prepared and tested in dynamic compression to study the changes in their stiffness and vibration damping characteristics under the influence of a magnetic field. Aligned and isotropic magnetorheological elastomer composites were prepared using room temperature vulcanizing silicone elastomer as the matrix material and carbonyl iron as the magnetizable filler. Aligned MREs were prepared by curing the material under an external magnetic field. Aligned MREs were tested and the results were compared with isotropic composites with no preferred orientation. The mechanical properties of the MREs were tested in cyclic compression passively and with increasing magnetic flux density. The influence of the testing frequency and strain amplitude on the dynamic stiffness and damping properties was studied. It was noted that when measured in a magnetic field both the dynamic spring constants and the loss factor values of aligned MREs were increased compared to the zero-field values. The dynamic stiffness of aligned MREs increased with increasing testing frequency and it was tunable with magnetic flux density in the studied frequency range. The loss factor of aligned MREs was also tunable with the magnetic flux density but the absolute values also depend on the testing frequency. The dynamic stiffness of the aligned MREs measured in compression decreased with increasing strain amplitude, but the damping properties were not affected similarly. On the basis of these results, MREs are applicable as tunable spring elements for active vibration control.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures, and improved materials, processing methods, and sensing play an important role in future research.
Abstract: Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research.

1,028 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art review on the recent progress of magnetorheological elastomer technology, with special emphasis on the research and development of MR elastomers and their applications.
Abstract: During the last few decades, magnetorheological (MR) elastomers have attracted a significant amount of attention for their enormous potential in engineering applications. Because they are a solid counterpart to MR fluids, MR elastomers exhibit a unique field-dependent material property when exposed to a magnetic field, and they overcome major issues faced in magnetorheological fluids, e.g. the deposition of iron particles, sealing problems and environmental contamination. Such advantages offer great potential for designing intelligent devices to be used in various engineering fields, especially in fields that involve vibration reduction and isolation. This paper presents a state of the art review on the recent progress of MR elastomer technology, with special emphasis on the research and development of MR elastomer devices and their applications. To keep the integrity of the knowledge, this review includes a brief introduction of MR elastomer materials and follows with a discussion of critical issues involved in designing magnetorheological elastomer devices, i.e. operation modes, coil placements and principle fundamentals. A comprehensive review has been presented on the research and development of MR elastomer devices, including vibration absorbers, vibration isolators, base isolators, sensing devices, and so on. A summary of the research on the modeling mechanical behavior for both the material and the devices is presented. Finally, the challenges and the potential facing magnetorheological elastomer technology are discussed, and suggestions have been made based on the authors’ knowledge and experience.

498 citations

Journal ArticleDOI
TL;DR: Magnetorheological (MR) materials are classified as smart materials due to their responsiveness to external magnetic stimuli as discussed by the authors, and they have led to broad applications in several potential fields.
Abstract: Magnetorheological (MR) materials are classified as smart materials due to their responsiveness to external magnetic stimuli. Intensive research on MR materials has led to broad applications in several potential fields. A solid carrier matrix state called MR elastomer with its exceptional magnetic responsive feature is obtained by merging magnetizable particles within an elastomeric polymer. This integration results in outstanding characteristics on the rheological performances. Special prominence is given to the understanding of the base materials and fabrication as well as the functional behavior through various characterization methods. Broad applications of MREs are also explored to provide a profound market picture and to motivate researchers to develop novel technology. The functional behavior of MREs is briefly explained. The art of the materials provides the current position and mapping of the matrix and filler particles. Types of matrix and particles are mentioned together with the level of the research interest on MREs. Description of the fabrication is provided in simple diagrams as summarized from previous works to enhance the MREs performance. The possible tests to reveal the characteristics of the MREs are delivered with the global experimental setup. The review also explains the applications of MREs as well as discussion on the MREs future promising applications.

287 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of variable stiffness material based on the combination of a rigid low-melting-point-alloy (LMPA) microstructure embedded in soft poly(dimethylsiloxane) (PDMS) was developed.
Abstract: Materials with controllable stiffness are of great interest to many fields, including medicine and robotics. In this paper we develop a new type of variable stiffness material based on the combination of a rigid low-melting-point-alloy (LMPA) microstructure embedded in soft poly(dimethylsiloxane) (PDMS). This material can transition between rigid and soft states by controlling the phase of the LMPA through efficient, direct Joule-heating of the LMPA microstructure. The devices tested demonstrate a relative stiffness change of >25× (elastic modulus is 40 MPa when LMPA is solid and 1.5 MPa when LMPA is liquid) and a fast transition from rigid to soft states (<1 s) at low power (<500 mW). Additionally, the material possesses inherent state (soft and rigid) and strain sensing (GF = 0.8) based on resistance changes.

169 citations

Journal ArticleDOI
TL;DR: In this article, the effect of an external homogeneous magnetic field on the viscoelastic properties of these materials is studied by dynamic experiments (shear oscillations on a rheometer).
Abstract: Novel magnetorheological elastomers (MRE) based on a highly elastic silicone rubber filled with carbonyl iron magnetic particles of 3―5 and 3―50 μm are synthesized. The effect of an external homogeneous magnetic field on the viscoelastic properties of these materials is studied by dynamic experiments (shear oscillations on a rheometer). It is shown that the magnetic response of the MRE increases with a decrease of the strain. At 1% deformation both the storage and loss moduli of the new MRE demonstrate a giant response to the magnetic field, namely, an increase of more than two orders of magnitude in both moduli in a field of 300 mT is observed. In addition, these new MREs show a twofold increase of the damping ratio, which is important for their application as tunable vibration absorbers.

161 citations