scispace - formally typeset
Search or ask a question
Author

T. Nikola

Bio: T. Nikola is an academic researcher from Cornell University. The author has contributed to research in topics: Telescope & Galaxy. The author has an hindex of 18, co-authored 40 publications receiving 1715 citations.
Topics: Telescope, Galaxy, Engineering, Redshift, Spectrometer

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a survey of star formation tracer at redshifts covering the epoch of maximum star formation in the universe and quadruples the number of reported high-z [C II] detections is presented.
Abstract: We have detected the 158 {mu}m [C II] line from 12 galaxies at z {approx} 1-2. This is the first survey of this important star formation tracer at redshifts covering the epoch of maximum star formation in the universe and quadruples the number of reported high-z [C II] detections. The line is very luminous, between <0.024% and 0.65% of the far-infrared (FIR) continuum luminosity of our sources, and arises from photodissociation regions on molecular cloud surfaces. An exception is PKS 0215+015, where half of the [C II] emission could arise from X-ray-dominated regions near the central active galactic nucleus (AGN). The L{sub [C{sub II}]}/L{sub FIR} ratio in our star formation-dominated systems is {approx}8 times larger than that of our AGN-dominated systems. Therefore this ratio selects for star formation-dominated systems. Furthermore, the L{sub [C{sub II}]}/L{sub FIR} and L{sub [C{sub II}]}/L{sub (CO(1-0))} ratios in our star-forming galaxies and nearby starburst galaxies are the same, so that luminous star-forming galaxies at earlier epochs (z {approx} 1-2) appear to be scaled-up versions of local starbursts entailing kiloparsec-scale starbursts. Most of the FIR and [C II] radiation from our AGN-dominated sample (excepting PKS 0215+015) also arises from kiloparsec-scale star formation, but with far-UV radiation fieldsmore » {approx}8 times more intense than in our star formation-dominated sample. We speculate that the onset of AGN activity stimulates large-scale star formation activity within AGN-dominated systems. This idea is supported by the relatively strong [O III] line emission, indicating very young stars, that was recently observed in high-z composite AGN/starburst systems. Our results confirm the utility of the [C II] line, and in particular, the L{sub [C{sub II}]}/L{sub (FIR)} and L{sub [C{sub II}]}/L{sub CO(1-0)} ratios as tracers of star formation in galaxies at high redshifts.« less

401 citations

Journal ArticleDOI
TL;DR: In this paper, the first detection of the 205 μm 3P1 P0 [N II] line from a ground-based observatory using a direct detection spectrometer was reported, using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) on the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO).
Abstract: We report the first detection of the 205 μm 3P1 P0 [N II] line from a ground-based observatory using a direct detection spectrometer. The line was detected from the Carina star formation region using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) on the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) at the South Pole. The [N II] 205 μm line strength indicates a low-density (n ~ 32 cm-3) ionized medium, similar to the low-density ionized halo previously reported in its [O III] 52 and 88 μm line emission. When compared with the Infrared Space Observatory [C II] observations of this region, we find that 27% of the [C II] line emission arises from this low-density ionized gas, but the large majority (~73%) of the observed [C II] line emission arises from the neutral interstellar medium. This result supports and underpins prior conclusions that most of the observed [C II] 158 μm line emission from Galactic and extragalactic sources arises from the warm, dense photodissociated surfaces of molecular clouds. The detection of the [N II] line demonstrates the utility of Antarctic sites for THz spectroscopy.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3.
Abstract: We report the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous ( L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L(sub [Cu II] L(sub Fir) approximates 2 x 10(exp -3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approximates 10(exp 4.2) /cm(exp 3) , and that are illuminated by a far-UV radiation field approximately 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L(sub [CII])/L(sub FIR) ratio is higher than observed in local ultralummous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L(sub [CII])/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

140 citations

Journal ArticleDOI
TL;DR: The first detection of the 3P1 - 3P0 [NII] line from a ground-based observatory using a direct detection spectrometer was reported in this paper.
Abstract: We report the first detection of the 205 um 3P1 - 3P0 [NII] line from a ground-based observatory using a direct detection spectrometer. The line was detected from the Carina star formation region using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) on the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) at South Pole. The [NII] 205 um line strength indicates a low-density (n ~ 32 cm^-3 ionized medium, similar to the low-density ionized halo reported previously in its [OIII] 52 and 88 um line emission. When compared with the ISO [CII] observations of this region, we find that ~27% of the [CII] line emission arises from this low-density ionized gas, but the large majority ~ 73% of the observed [CII] line emission arises from the neutral interstellar medium. This result supports and underpins prior conclusions that most of the observed [CII] 158 um line emission from Galactic and extragalactic sources arises from the warm, dense photodissociated surfaces of molecular clouds. The detection of the [NII] line demonstrates the utility of Antarctic sites for THz spectroscopy.

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical underpinning, techniques, and results of efforts to estimate the CO-to-H2 conversion factor in different environments, and recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty.
Abstract: CO line emission represents the most accessible and widely used tracer of the molecular interstellar medium. This renders the translation of observed CO intensity into total H2 gas mass critical to understand star formation and the interstellar medium in our Galaxy and beyond. We review the theoretical underpinning, techniques, and results of efforts to estimate this CO-to-H2 “conversion factor,” XCO, in different environments. In the Milky Way disk, we recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty. Studies of other “normal galaxies” return similar values in Milky Way-like disks, but with greater scatter and systematic uncertainty. Departures from this Galactic conversion factor are both observed and expected. Dust-based determinations, theoretical arguments, and scaling relations all suggest that XCO increases with decreasing metallicity, turning up sharply below metallicity ≈ 1/3–1/2 solar in a manner consistent with model predictions that identify shielding as a key parameter. Based on spectral line modeling and dust observations, XCO appears to drop in the central, bright regions of some but not all galaxies, often coincident with regions of bright CO emission and high stellar surface density. This lower XCO is also present in the overwhelmingly molecular interstellar medium of starburst galaxies, where several lines of evidence point to a lower CO-to-H2 conversion factor. At high redshift, direct evidence regarding the conversion factor remains scarce; we review what is known based on dynamical modeling and other arguments. Subject headings: ISM: general — ISM: molecules — galaxies: ISM — radio lines: ISM

2,004 citations

Journal ArticleDOI
TL;DR: In the last decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts as mentioned in this paper.
Abstract: Over the past decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts. Molecular gas has been observed in close to 200 galaxies at z > 1, including numerous AGN host-galaxies out to z ∼ 7, highly star-forming submillimeter galaxies, and increasing samples of main-sequence color-selected star-forming galaxies at z ∼ 1.5 to 2.5. Studies have moved well beyond simple detections to dynamical imaging at kiloparsec-scale resolution and multiline, multispecies studies that determine the physical conditions in the ISM in early galaxies. Observations of the cool gas are the required complement to studies of the stellar density and star-formation history of the Universe as they reveal the phase of the ISM that immediately precedes star formation in galaxies. Current observations suggest that t...

1,041 citations

Journal ArticleDOI
TL;DR: In this article, the effects of metallicity and cloud extinction on the predicted line intensities were examined for a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars.
Abstract: Photodissociation region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates, which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n = 101-107 cm-3 and for incident far-ultraviolet radiation fields over the range G0 = 10-0.5-106.5 (where G0 is the far-ultravioliet [FUV] flux in units of the local interstellar value), for metallicities Z = 1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 μm, [O I] 63 μm and 145 μm, [C I] 370 μm and 609 μm, CO J = 1-0, J = 2-1, J = 3-2, J = 6-5, and J = 15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far-infrared and submillimeter spectra observable with the Infrared Space Observatory (ISO), the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Wave Astronomy Satellite, the Far Infrared and Submillimeter Telescope, and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground-based observations of M82, NGC 278, and the Large Magellanic Cloud. Our comparison of the conditions in M82 and NGC 278 show that both the gas density and FUV flux are enhanced in the starburst nucleus of M82 compared with those in the normal spiral NGC 278. We model the high [C II]/CO ratio observed in the 30 Doradus region of the LMC and find that it can be explained either by lowering the average extinction through molecular clouds or by enhancing the density contrast between the atomic layers of PDRs and the CO-emitting cloud cores. The ratio L[CO]/M[H2] implied by the low extinction model gives cloud masses too high for gravitational stability. We therefore rule out low-extinction clouds as an explanation for the high [C II]/CO ratio and instead appeal to density contrast in AV = 10 clouds.

733 citations

03 Jun 2001
Abstract: We present the largest galaxies as seen in the near-infrared (1–2 μm), imaged with the Two Micron All Sky Survey (2MASS), ranging in angular size from 1' to 15. We highlight the 100 largest in the sample. The galaxies span all Hubble morphological types, including elliptical galaxies, normal and barred spirals, and dwarf and peculiar classes. The 2MASS Large Galaxy Atlas provides the necessary sensitivity and angular resolution to examine in detail morphologies in the near-infrared, which may be radically different from those in the optical. Internal structures such as spirals, bulges, warps, rings, bars, and star formation regions are resolved by 2MASS. In addition to large mosaic images, the atlas includes astrometric, photometric, and shape global measurements for each galaxy. A comparison of fundamental measures (e.g., surface brightness, Hubble type) is carried out for the sample and compared with the Third Reference Catalogue. We further showcase NGC 253 and M51 (NGC 5194/5195) to demonstrate the quality and depth of the data. The atlas represents the first uniform, all-sky, dust-penetrated view of galaxies of every type, as seen in the near-infrared wavelength window that is most sensitive to the dominant mass component of galaxies. The images and catalogs are available through the NASA/IPAC Extragalactic Database and Infrared Science Archive and are part of the 2MASS Extended Source Catalog.

659 citations

Journal ArticleDOI
18 Apr 2013-Nature
TL;DR: Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
Abstract: Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A `maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

631 citations