scispace - formally typeset
Search or ask a question
Author

T. Odstrcil

Bio: T. Odstrcil is an academic researcher from Max Planck Society. The author has contributed to research in topics: ASDEX Upgrade & Tokamak. The author has an hindex of 18, co-authored 25 publications receiving 938 citations. Previous affiliations of T. Odstrcil include Technische Universität München & Czech Technical University in Prague.
Topics: ASDEX Upgrade, Tokamak, Plasma, Physics, Divertor

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the behavior of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analysed and modelled with a combination of neoclassical and gyrokinetic codes.
Abstract: The behaviour of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analysed and modelled with a combination of neoclassical and gyrokinetic codes In these discharges, good confinement conditions can be maintained only for the first 2?3?s of the high power phase Later W accumulation is regularly observed, often accompanied by the onset of magneto-hydrodynamical activity, in particular neoclassical tearing modes (NTMs), both of which have detrimental effects on the global energy confinement The dynamics of the accumulation process is examined, taking into consideration the concurrent evolution of the background plasma profiles, and the possible onset of NTMs Two time slices of a representative discharge, before and during the accumulation process, are analysed with two independent methods, in order to reconstruct the W density distribution over the poloidal cross-section The same time slices are modelled, computing both neoclassical and turbulent transport components and consistently including the impact of centrifugal effects, which can be significant in these plasmas, and strongly enhance W neoclassical transport The modelling closely reproduces the observations and identifies inward neoclassical convection due to the density peaking of the bulk plasma in the central region as the main cause of the accumulation The change in W neoclassical convection is directly produced by the transient behaviour of the main plasma density profile, which is hollow in the central region in the initial part of the high power phase of the discharge, but which develops a significant density peaking very close to the magnetic axis in the later phase The analysis of a large set of discharges provides clear indications that this effect is generic in this scenario The unfavourable impact of the onset of NTMs on the W behaviour, observed in several discharges, is suggested to be a consequence of a detrimental combination of the effects of neoclassical transport and of the appearance of an island

142 citations

Journal ArticleDOI
TL;DR: In this article, the effects of poloidal asymmetries and heated minority species are shown to be necessary to accurately describe heavy impurity transport in present experiments in JET and ASDEX Upgrade.
Abstract: The effects of poloidal asymmetries and heated minority species are shown to be necessary to accurately describe heavy impurity transport in present experiments in JET and ASDEX Upgrade. Plasma rotation, or any small background electrostatic field in the plasma, such as that generated by anisotropic external heating can generate strong poloidal density variation of heavy impurities. These asymmetries have recently been added to numerical tools describing both neoclassical and turbulent transport and can increase neoclassical tungsten transport by an order of magnitude. Modelling predictions of the steady-state two-dimensional tungsten impurity distribution are compared with tomography from soft x-ray diagnostics. The modelling identifies neoclassical transport enhanced by poloidal asymmetries as the dominant mechanism responsible for tungsten accumulation in the central core of the plasma. Depending on the bulk plasma profiles, turbulent diffusion and neoclassical temperature screening can prevent accumulation. Externally heated minority species can significantly enhance temperature screening in ICRH plasmas.

115 citations

Journal ArticleDOI
TL;DR: In this article, a theory-based modelling of core heavy impurity transport is presented, and shown to be necessary for quantitative description of present experiments in JET and ASDEX Upgrade.
Abstract: Recent developments in theory-based modelling of core heavy impurity transport are presented, and shown to be necessary for quantitative description of present experiments in JET and ASDEX Upgrade. The treatment of heavy impurities is complicated by their large mass and charge, which result in a strong response to plasma rotation or any small background electrostatic field in the plasma, such as that generated by anisotropic external heating. These forces lead to strong poloidal asymmetries of impurity density, which have recently been added to numerical tools describing both neoclassical and turbulent transport. Modelling predictions of the steady-state two-dimensional tungsten impurity distribution are compared with experimental densities interpreted from soft X-ray diagnostics. The modelling identifies neoclassical transport enhanced by poloidal asymmetries as the dominant mechanism responsible for tungsten accumulation in the central core of the plasma. Depending on the bulk plasma profiles, neoclassical temperature screening can prevent accumulation, and can be enhanced by externally heated species, demonstrated here in ICRH plasmas.

106 citations

Journal ArticleDOI
Stefano Coda1, J. Ahn, Raffaele Albanese, Stefano Alberti1  +196 moreInstitutions (29)
TL;DR: The TCV tokamak has been extensively upgraded with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility.
Abstract: The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.

59 citations

Journal ArticleDOI
TL;DR: In this article, a comparison between the distributions resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the inversion radius is presented.
Abstract: Recent upgrades to the FIDA (fast-ion D-alpha) diagnostic at ASDEX Upgrade are discussed. The diagnostic has been extended from three to five line of sight arrays with different angles to the magnetic field, and a spectrometer redesign allows the simultaneous measurement of red- and blue-shifted parts of the Doppler spectrum. These improvements make it possible to reconstruct the 2D fast-ion velocity distribution from the FIDA measurements by tomographic inversion under a wide range of plasma parameters. Two applications of the tomography are presented: a comparison between the distributions resulting from 60 keV and 93 keV neutral beam injection and a velocity-space resolved study of fast-ion redistribution induced by a sawtooth crash inside and outside the sawtooth inversion radius.

53 citations


Cited by
More filters
01 Jan 1995
TL;DR: In this paper, a model for sawtooth oscillations in tokamak experiments is outlined, and a threshold criterion for the onset of internal kink modes and a prescription for the relaxed profiles immediately after the saw-tooth crash have been implemented in a transport code that evolves the relevant plasma parameters.
Abstract: A model for sawtooth oscillations in tokamak experiments is outlined. A threshold criterion for the onset of internal kink modes and a prescription for the relaxed profiles immediately after the sawtooth crash have been implemented in a transport code that evolves the relevant plasma parameters. In this paper, applications of this model to the prediction of the sawtooth period and amplitude in projected ITER discharges are discussed. It is found that sawteeth can be stabilized transiently by the fusion alpha particles in ITER for periods that are long on the energy confinement timescale (). The sawtooth period depends on the amount of reconnected flux at the preceding sawtooth crash. When Kadomtsev's full reconnection model is used, the period can exceed 100 s. The sawtooth mixing radius following long duration sawtooth ramps can easily exceed half the plasma minor radius, raising questions about the desirability of transient sawtooth suppression.

327 citations

Journal ArticleDOI
TL;DR: In this paper , a novel architecture for tokamak magnetic controller design that autonomously learns to command the full set of control coils is presented. But this approach has unprecedented flexibility and generality in problem specification and yields a notable reduction in design effort to produce new plasma configurations.
Abstract: Abstract Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a promising path towards sustainable energy. A core challenge is to shape and maintain a high-temperature plasma within the tokamak vessel. This requires high-dimensional, high-frequency, closed-loop control using magnetic actuator coils, further complicated by the diverse requirements across a wide range of plasma configurations. In this work, we introduce a previously undescribed architecture for tokamak magnetic controller design that autonomously learns to command the full set of control coils. This architecture meets control objectives specified at a high level, at the same time satisfying physical and operational constraints. This approach has unprecedented flexibility and generality in problem specification and yields a notable reduction in design effort to produce new plasma configurations. We successfully produce and control a diverse set of plasma configurations on the Tokamak à Configuration Variable 1,2 , including elongated, conventional shapes, as well as advanced configurations, such as negative triangularity and ‘snowflake’ configurations. Our approach achieves accurate tracking of the location, current and shape for these configurations. We also demonstrate sustained ‘droplets’ on TCV, in which two separate plasmas are maintained simultaneously within the vessel. This represents a notable advance for tokamak feedback control, showing the potential of reinforcement learning to accelerate research in the fusion domain, and is one of the most challenging real-world systems to which reinforcement learning has been applied.

318 citations

Journal Article
TL;DR: In this paper, a new theory-based transport model with comprehensive physics (trapping, general toroidal geometry, fully electromagnetic, electron-ion collisions, impurity ions) has been developed.
Abstract: A new theory-based transport model with comprehensive physics (trapping, general toroidal geometry, fully electromagnetic, electron-ion collisions, impurity ions) has been developed. The core of the model is the new trapped-gyro-Landau-fluid (TGLF) equations, which provide a fast and accurate approximation to the linear eigenmodes for gyrokinetic drift-wave instabilities (trapped ion and electron modes, ion and electron temperature gradient modes, and kinetic ballooning modes). The new TGLF transport model is more accurate, and has an extended range of validity, compared to its predecessor GLF23. The TGLF model unifies trapped and passing particles in a single set of gyro-Landau-fluid equations. A model for the averaging of the Landau resonance by the trapped particles makes the equations work seamlessly over the whole drift-wave wave-number range from trapped ion modes to electron temperature gradient modes. A fast eigenmode solution method enables unrestricted magnetic geometry. The transport model uses...

246 citations

Journal ArticleDOI
X. Litaudon, S. Abduallev1, Mitul Abhangi, P. Abreu2  +1225 moreInstitutions (69)
TL;DR: In this paper, the authors reviewed the 2014-2016 JET results in the light of their significance for optimising the ITER research plan for the active and non-active operation, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric.
Abstract: The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at β N ∼ 1.8 and n/n GW ∼ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.

162 citations