scispace - formally typeset
Search or ask a question
Author

T. R. Auton

Bio: T. R. Auton is an academic researcher from University of Cambridge. The author has contributed to research in topics: Shear flow & Conservative vector field. The author has an hindex of 2, co-authored 2 publications receiving 1019 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a general expression for the fluid force on a simple shape moving with a velocity v through inviscid fluid in which there is an unsteady non-uniform rotational velocity field uo(x,t) in two or three dimensions is derived.
Abstract: A general expression is derived for the fluid force on a body of simple shape moving with a velocity v through inviscid fluid in which there is an unsteady non-uniform rotational velocity field uo(x,t) in two or three dimensions. It is assumed that the radius is small compared with the scale over which the strain rate changes, though for the sphere it is also assumed that the changes in the ambient velocity field over the scale of the sphere are small compared with the velocity of the body relative to the flow. Given these approximations it is shown that the effects of the rate of change of the vorticity of the ambient flow is of second order and can be neglected. However the rate of change of the irrotational straining motion is included in the analysis. It is shown that the inertial forces derived by many authors for irrotational flow can be simply added to a generalization of the lift force derived by Auton (1987) in a companion paper. It is shown how this lift force is made up of a rotational and an inertial or added-mass component. For three-dimensional bluff bodies the latter is generally larger (by a factor of three for a sphere), and can be simply calculated from the added-mass coefficient. For illustration, the general expression is used to derive formulae for (i) the motion of a spherical bubble in a steady non-uniform flow to contrast with the motion in an unsteady flow, and (ii) the motion of rigid volumes of neutral density across an inviscid shear flow. These results show how added-mass (and lift) forces lead to different motions for a sphere and a cylinder. The general expression is useful in two-phase flow calculations, and for indicating the forces and motions of 'lumps of fluid' in turbulent flows.

574 citations

Journal ArticleDOI
TL;DR: In this article, a sphere is placed in a weak shear flow of an inviscid fluid and the secondary velocity resulting from advection of vorticity by the irrotational component of the flow is computed on the sphere surface, and on the upstream axis.
Abstract: This paper concerns the flow about a sphere placed in a weak shear flow of an inviscid fluid. The secondary velocity resulting from advection of vorticity by the irrotational component of the flow is computed on the sphere surface, and on the upstream axis. The resulting lift force on the sphere is evaluated, and the result is confirmed by an analytical far-field calculation. The displacement of the stagnation streamline, far upstream of the sphere, is calculated more accurately than in previous papers.

508 citations


Cited by
More filters
Dissertation
01 Jan 2003
TL;DR: In this paper, the authors describe the development and validation of Computational Fluid Dynamics (CFD) methodology for the simulation of dispersed two-phase flows, which employs averaged mass and momentum conservation equations to describe the time-dependent motion of both phases.
Abstract: This study describes the development and validation of Computational Fluid Dynamics (CFD) methodology for the simulation of dispersed two-phase flows. A two-fluid (Euler-Euler) methodology previously developed at Imperial College is adapted to high phase fractions. It employs averaged mass and momentum conservation equations to describe the time-dependent motion of both phases and, due to the averaging process, requires additional models for the inter-phase momentum transfer and turbulence for closure. The continuous phase turbulence is represented using a two-equation k − ε−turbulence model which contains additional terms to account for the effects of the dispersed on the continuous phase turbulence. The Reynolds stresses of the dispersed phase are calculated by relating them to those of the continuous phase through a turbulence response function. The inter-phase momentum transfer is determined from the instantaneous forces acting on the dispersed phase, comprising drag, lift and virtual mass. These forces are phase fraction dependent and in this work revised modelling is put forward in order to capture the phase fraction dependency of drag and lift. Furthermore, a correlation for the effect of the phase fraction on the turbulence response function is proposed. The revised modelling is based on an extensive survey of the existing literature. The conservation equations are discretised using the finite-volume method and solved in a solution procedure, which is loosely based on the PISO algorithm, adapted to the solution of the two-fluid model. Special techniques are employed to ensure the stability of the procedure when the phase fraction is high or changing rapidely. Finally, assessment of the methodology is made with reference to experimental data for gas-liquid bubbly flow in a sudden enlargement of a circular pipe and in a plane mixing layer. Additionally, Direct Numerical Simulations (DNS) are performed using an interface-capturing methodology in order to gain insight into the dynamics of free rising bubbles, with a view towards use in the longer term as an aid in the development of inter-phase momentum transfer models for the two-fluid methodology. The direct numerical simulation employs the mass and momentum conservation equations in their unaveraged form and the topology of the interface between the two phases is determined as part of the solution. A novel solution procedure, similar to that used for the two-fluid model, is used for the interface-capturing methodology, which allows calculation of air bubbles in water. Two situations are investigated: bubbles rising in a stagnant liquid and in a shear flow. Again, experimental data are used to verify the computational results.

968 citations

Journal ArticleDOI
TL;DR: In this paper, the average settling velocity in homogeneous turbulence of a small rigid spherical particle, subject to a Stokes drag force, has been shown to differ from that in still fluid owing to a bias from the particle inertia.
Abstract: The average settling velocity in homogeneous turbulence of a small rigid spherical particle, subject to a Stokes drag force, has been shown to differ from that in still fluid owing to a bias from the particle inertia (Maxey 1987). Previous numerical results for particles in a random flow field, where the flow dynamics were not considered, showed an increase in the average settling velocity. Direct numerical simulations of the motion of heavy particles in isotropic homogeneous turbulence have been performed where the flow dynamics are included. These show that a significant increase in the average settling velocity can occur for particles with inertial response time and still-fluid terminal velocity comparable to the Kolmogorov scales of the turbulence. This increase may be as much as 50% of the terminal velocity, which is much larger than was previously found. The concentration field of the heavy particles, obtained from direct numerical simulations, shows the importance of the inertial bias with particles tending to collect in elongated sheets on the peripheries of local vortical structures. This is coupled then to a preferential sweeping of the particles in downward moving fluid. Again the importance of Kolmogorov scaling to these processes is demonstrated. Finally, some consideration is given to larger particles that are subject to a nonlinear drag force where it is found that the nonlinearity reduces the net increase in settling velocity.

966 citations

Journal ArticleDOI
TL;DR: In this article, trajectories of single air bubbles in simple shear flows of glycerol-water solution were measured to evaluate transverse lift force acting on single bubbles, and the authors concluded that the critical bubble diameter causing the radial void profile transition from wall peaking to core peaking in an air-water bubbly flow evaluated by the proposed CT correlation coincided with available experimental data.

855 citations

Journal ArticleDOI
TL;DR: The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing as discussed by the authors, and the statistical properties of particles when advected by fully developed turbulent flows.
Abstract: The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing. In this article, we report some motivations behind the Lagrangian description of turbulence and focus on the statistical properties of particles when advected by fully developed turbulent flows. By means of a detailed comparison between experimental and numerical results, we review the physics of particle acceleration, Lagrangian velocity structure functions, and pairs and shapes evolution. Recent results for nonideal particles are discussed, providing an outlook on future directions.

761 citations

Journal ArticleDOI
TL;DR: In this article, a trident approach consisting of experimental, analytical, and numerical work has given a clearer description of the hydrodynamic forces experienced by isolated bubbles moving either in inviscid flows or in slightly viscous laminar flows, and a significant part of the paper is devoted to a discussion of drag, added mass force, and shear-induced lift experienced by spheroidal bubbles moving in inertially dominated, time-dependent, rotational, nonuniform flows.
Abstract: ▪ Abstract Predicting the motion of bubbles in dispersed flows is a key problem in fluid mechanics that has a bearing on a wide range of applications from oceanography to chemical engineering. In this review we synthesize the recent progress made in describing bubble motion in inhomogeneous flow. A trident approach consisting of experimental, analytical, and numerical work has given a clearer description of the hydrodynamic forces experienced by isolated bubbles moving either in inviscid flows or in slightly viscous laminar flows. A significant part of the paper is devoted to a discussion of drag, added-mass force, and shear-induced lift experienced by spheroidal bubbles moving in inertially dominated, time-dependent, rotational, nonuniform flows. The important influence of surfactants and shape distortion on bubble motion in a quiescent liquid is highlighted. Examples of bubble motion in inhomogeneous flows combining several of the effects mentioned above are discussed.

689 citations