scispace - formally typeset
Search or ask a question
Author

T. Ramesh

Bio: T. Ramesh is an academic researcher from Motilal Nehru National Institute of Technology Allahabad. The author has contributed to research in topics: Embodied energy & Roof. The author has an hindex of 7, co-authored 9 publications receiving 1303 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a critical review of the life cycle energy analyses of buildings resulting from 73 cases across 13 countries is presented, including both residential and office buildings, and it is observed that low energy buildings perform better than self-sufficient (zero operating energy) buildings in the life-cycle context.

1,153 citations

Journal ArticleDOI
TL;DR: In this article, a residential building of usable floor area about 85.5 m2 located at Hyderabad (Andhra Pradesh), India is evaluated under different envelopes and climates in Indian context.

105 citations

Journal Article
TL;DR: It is shown that mutations in these genes are rare in Indian POAG patients, the first report to document the involvement of the CYP1B1, MYOC, and OPTN genes in the etiology of POAG in the same set of Indian patients.
Abstract: Purpose Mutations in the CYP1B1, MYOC, OPTN, and WDR36 genes result in glaucoma. Given its expression in the optic nerve, it is likely a mutation in the OPTC gene is also involved in initiating glaucoma. This study was designed to evaluate the involvement of the CYP1B1, MYOC, OPTN, and OPTC genes in the etiology of adult-onset primary open-angle glaucoma (POAG) found in 251 Indian patients.

84 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a life cycle energy analysis of different types of residential buildings (one storey, two storey and duplex and multi storey) in Indian context.

70 citations

Journal ArticleDOI
25 Mar 2013
TL;DR: In this paper, the authors presented life cycle energy analysis of a multifamily residential house situated in Allahabad (U.P), India, which is a 4-storey concrete-structured residential house comprising 44 apartments with usable floor area of 2960 m2.
Abstract: The paper presents life cycle energy analysis of a multifamily residential house situated in Allahabad (U.P), India. The study covers energy for construction, operation, maintenance and demolition phases of the building. The selected building is a 4-storey concrete structured multifamily residential house comprising 44 apartments with usable floor area of 2960 m2. The material used for the building structure is steel reinforced concrete and envelope is made up of burnt clay brick masonry. Embodied energy of the building is calculated based on the embodied energy coefficients of building materials applicable in Indian context. Operating energy of the building is estimated using e-Quest energy simulation software. Results show that operating energy (89%) of the building is the largest contributor to life cycle energy of the building, followed by embodied energy (11%). Steel, cement and bricks are most significant materials in terms of contribution to the initial embodied energy profile. The life cycle energy intensity of the building is found to be 75 GJ/m2 and energy index 288 kWh/m2 years (primary). Use of aerated concrete blocks in the construction of walls and for covering roof has been examined as energy saving strategy and it is found that total life cycle energy demand of the building reduces by 9.7%. In addition, building integrated photo voltaic (PV) panels are found most promising for reduction (37%) in life cycle energy (primary) use of the building.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes and organizes the literature on life cycle assessment (LCA), life cycle energy analysis (LCEA), and life cycle cost analysis for environmental evaluation of buildings and building related industry and sector (including construction products, construction systems, buildings, and civil engineering constructions).
Abstract: This review summarizes and organizes the literature on life cycle assessment (LCA), life cycle energy analysis (LCEA) and life cycle cost analysis (LCCA) studies carried out for environmental evaluation of buildings and building related industry and sector (including construction products, construction systems, buildings, and civil engineering constructions). The review shows that most LCA and LCEA are carried out in what is shown as “exemplary buildings”, that is, buildings that have been designed and constructed as low energy buildings, but there are very few studies on “traditional buildings”, that is, buildings such as those mostly found in our cities. Similarly, most studies are carried out in urban areas, while rural areas are not well represented in the literature. Finally, studies are not equally distributed around the world.

965 citations

Journal ArticleDOI
06 Jun 2014-Science
TL;DR: Life Cycle Assessment constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but it is cautioned that completeness in scope comes at the price of simplifications and uncertainties.
Abstract: In the modern economy, international value chains--production, use, and disposal of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts and assess them from a systems perspective, identifying strategies for improvement without burden shifting. We review recent developments in LCA, including existing and emerging applications aimed at supporting environmentally informed decisions in policy-making, product development and procurement, and consumer choices. LCA constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but we also caution that completeness in scope comes at the price of simplifications and uncertainties. Future advances of LCA in enhancing regional detail and accuracy as well as broadening the assessment to economic and social aspects will make it more relevant for producers and consumers alike.

888 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore how and where phase change materials (PCMs) are used in passive latent heat thermal energy storage (LHTES) systems, and present an overview of how these construction solutions are related to building's energy performance.

817 citations

BookDOI
01 Oct 2012
TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options.
Abstract: The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy chalenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is a invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

812 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a holistic picture ranging in scale from the science of the cell wall to the engineering and global policies that could maximise forestry and timber construction as a boon to both people and the planet.
Abstract: Trees, and their derivative products, have been used by societies around the world for thousands of years. Contemporary construction of tall buildings from timber, in whole or in part, suggests a growing interest in the potential for building with wood at a scale not previously attainable. As wood is the only significant building material that is grown, we have a natural inclination that building in wood is good for the environment. But under what conditions is this really the case? The environmental benefits of using timber are not straightforward; although it is a natural product, a large amount of energy is used to dry and process it. Much of this can come from the biomass of the tree itself, but that requires investment in plant, which is not always possible in an industry that is widely distributed among many small producers. And what should we build with wood? Are skyscrapers in timber a good use of this natural resource, or are there other aspects of civil and structural engineering, or large-scale infrastructure, that would be a better use of wood? Here, we consider a holistic picture ranging in scale from the science of the cell wall to the engineering and global policies that could maximise forestry and timber construction as a boon to both people and the planet.

682 citations