scispace - formally typeset
Search or ask a question
Author

T. S. Smith

Bio: T. S. Smith is an academic researcher from University of California, Davis. The author has contributed to research in topics: Digital image correlation & Displacement field. The author has an hindex of 1, co-authored 1 publications receiving 644 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a three-dimensional extension of two-dimensional digital image correlation is developed using digital image volumes generated through high-resolution X-ray tomography of samples with microarchitectural detail, such as the trabecular bone tissue found within the skeleton.
Abstract: A three-dimensional extension of two-dimensional digital image correlation has been developed. The technique uses digital image volumes generated through high-resolution X-ray tomography of samples with microarchitectural detail, such as the trabecular bone tissue found within the skeleton. Image texture within the material is used for displacement field measurement by subvolume tracking. Strain fields are calculated from the displacement fields by gradient estimation techniques. Estimates of measurement precision were developed through correlation of repeat unloaded data sets for a simple sum-of-squares displacement-only correlation formulation. Displacement vector component errors were normally distributed, with a standard deviation of 0.035 voxels (1.22 μm). Strain tensor component errors were also normally distributed, with a standard deviation of approximately 0.0003. The method was applied to two samples taken from the thigh bone near the knee. Strains were effectively measured in both the elastic and postyield regimes of material behavior, and the spatial patterns showed clear relationships to the sample microarchitectures.

723 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the 2D digital image correlation (2D DIC) technique for displacement field measurement and strain field estimation is presented, and detailed analyses of the measurement accuracy considering the influences of both experimental conditions and algorithm details are provided.
Abstract: As a practical and effective tool for quantitative in-plane deformation measurement of a planar object surface, two-dimensional digital image correlation (2D DIC) is now widely accepted and commonly used in the field of experimental mechanics. It directly provides full-field displacements to sub-pixel accuracy and full-field strains by comparing the digital images of a test object surface acquired before and after deformation. In this review, methodologies of the 2D DIC technique for displacement field measurement and strain field estimation are systematically reviewed and discussed. Detailed analyses of the measurement accuracy considering the influences of both experimental conditions and algorithm details are provided. Measures for achieving high accuracy deformation measurement using the 2D DIC technique are also recommended. Since microscale and nanoscale deformation measurement can easily be realized by combining the 2D DIC technique with high-spatial-resolution microscopes, the 2D DIC technique should find more applications in broad areas.

2,530 citations

Journal ArticleDOI
TL;DR: A review of the principle, the advantages and limitations of X-ray CT itself are presented, together with an overview of some current applications of micro-CT in geosciences.

1,134 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight than conventional attenuation based tomography.
Abstract: X-ray computer tomography (CT) is fast becoming an accepted tool within the materials science community for the acquisition of 3D images. Here the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one. Our review considers first the image acquisition process, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight (e.g. fast and high resolution imaging, crystallite (grain) imaging) than conventional attenuation based tomography. Methods and shortcomings of CT are examined for the quantification of 3D volumetric data to extract key topological parameters such as phase fractions, phase contiguity, and damage levels as well as density variations. As a non-destructive technique, CT is an ideal means of following structural development over time via time lapse sequences of 3D images (sometimes called 3D movies or 4D imaging). This includes information nee...

1,009 citations

Journal ArticleDOI
TL;DR: X-ray microtomographic imaging is a non-destructive technique for quantifying these processes in three dimensions within individual pores, and as reported here, with rapidly increasing spatial and temporal resolution.

968 citations

Journal ArticleDOI
TL;DR: In this paper, the onset and evolution of localised deformation processes in sand with grain-scale resolution was observed and quantified by combining state-of-the-art X-ray micro tomography imaging with 3D volumetric digital image correlation techniques.
Abstract: The objective of this work was to observe and quantify the onset and evolution of localised deformation processes in sand with grain-scale resolution. The key element of the proposed approach is combining state-of-the-art X-ray micro tomography imaging with three-dimensional volumetric digital image correlation techniques. This allows not only the grain-scale details of a deforming sand specimen to be viewed, but also, and more importantly, the evolving three-dimensional displacement and strain fields throughout loading to be assessed. X-ray imaging and digital image correlation have been in the past applied individually to study sand deformation, but the combination of these two methods to study the kinematics of shear band formation at the grain scale is the first novel aspect of this work. Moreover, the authors have developed a completely original grain-scale volumetric digital image correlation method that permits the characterisation of the full kinematics (i.e. three-dimensional displacements and rotations) of all the individual sand grains in a specimen. The results obtained using the discrete volumetric digital image correlation confirm the importance of grain rotations associated with strain localisation.

503 citations