scispace - formally typeset
Search or ask a question
Author

T. Tanaka

Bio: T. Tanaka is an academic researcher from Waseda University. The author has contributed to research in topics: Dielectric & Graphene. The author has an hindex of 10, co-authored 11 publications receiving 1536 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explore how dielectric polymer composites with high thermal conductivity have been developed and explore how fillers can be used to increase the thermal conductivities of a polymer.
Abstract: The continuing miniaturization of electronic devices and the increasing power output of electrical equipment have created new challenges in packaging and insulating materials. The key goals are to develop materials with high thermal conductivity, low coefficient of thermal expansion (CTE), low dielectric con stant, high electrical resistivity, high breakdown strength, and most importantly, low cost. Polymeric materials have attracted increasing interest because of their excellent processability and low cost; however, most polymers are thermally insulating and have a thermal conductivity between 0.1 and 0.5 W-m-ι-K"1. One approach to increase the thermal conductivity of a polymer is to introduce high-thermal-conductivity fillers, such as aluminum oxide, aluminum nitride, boron nitride, silicon nitride, beryllium oxide, or diamond. In this review paper, we explore how dielectric polymer composites with high thermal conductivity have been developed.

581 citations

Journal ArticleDOI
TL;DR: In this study, three-phase composites comprising poly(vinylidene fluoride) (PVDF), barium titanate (BT) nanoparticles, and β-silicon carbide (β-SiC) whiskers were prepared and it was found that PVDF/BT/β- SiC composites show much higher dielectric constants in comparison with the PVDF/.
Abstract: Dielectric polymer composites with high dielectric constants and high thermal conductivity have many potential applications in modern electronic and electrical industry. In this study, three-phase composites comprising poly(vinylidene fluoride) (PVDF), barium titanate (BT) nanoparticles, and β-silicon carbide (β-SiC) whiskers were prepared. The superiority of this method is that, when compared with the two-phase PVDF/BT composites, three-phase composites not only show significantly increased dielectric constants but also have higher thermal conductivity. Our results show that the addition of 17.5 vol % β-SiC whiskers increases the dielectric constants of PVDF/BT nanocomposites from 39 to 325 at 1000 Hz, while the addition of 20.0 vol % β-SiC whiskers increases the thermal conductivity of PVDF/BT nanocomposites from 1.05 to 1.68 W m–1 K–1 at 25 °C. PVDF/β-SiC composites were also prepared for comparative research. It was found that PVDF/BT/β-SiC composites show much higher dielectric constants in compariso...

340 citations

Journal ArticleDOI
TL;DR: In this paper, a short review of some aspects of nanocomposites regarding electrical tree growth and breakdown is presented. And a tentative proposal for the mechanisms of treeing and breakdown in nanocompositionites is also put forward.
Abstract: In this short review, we discussed some aspects of nanocomposites regarding electrical tree growth and breakdown. It appears that nanoparticles, properly mixed and dispersed in the polymer matrix, increase the breakdown strength and hinder the growth of electrical trees in the nanocomposite. Nanoparticles act as barriers obstructing electrical tree growth and delaying dielectric breakdown. This article also put forward a tentative proposal for the mechanisms of treeing and breakdown in nanocomposites.

243 citations

Journal ArticleDOI
TL;DR: In this paper, a novel polyaniline decorated reduced graphene oxide (rPANI@rGO) two-dimensional (2D) hybrid sheets were successfully prepared by in situ polymerization of aniline on graphene oxide(GO) sheets and successive reduction by hydrazine.
Abstract: Novel polyaniline decorated reduced graphene oxide (rPANI@rGO) two-dimensional (2D) hybrids sheets were successfully prepared by in situ polymerization of aniline on graphene oxide (GO) sheets and successive reduction by hydrazine. PANI is heavily reduced, thus it is electrically insulating. The hybrid sheets were used as a novel filler for high performance poly(methyl methacrylate) (PMMA) nanocomposites. Our results show that, when compared with the PMMA/rGO composites, the PMMA/rPANI@rGO nanocomposites not only show a high dielectric constant but also have low dielectric loss. For example, at 1000 Hz, a dielectric constant of 40 and a dielectric loss of 0.12 were observed in the PMMA/rPANI@rGO nanocomposite with rGO/PMMA volume ratio of 6%, whereas the dielectric constant and dielectric loss of PMMA/rGO composite with rGO/PMMA volume ratio of 6% are about 20 and 1250, respectively. More importantly, the dielectric properties of PMMA/rPANI@rGO nanocomposites can be tuned by controlling the addition of the hybrid sheets. The improved dielectric properties in PMMA/rPANI@rGO nanocomposites should originate from the isolation effect of rPANI on the rGO in PMMA matrix, which not only improves the dispersion of rGO but also hinders the direct electrical contact between rGO. This research sets up a novel route to polymer composites with high dielectric constants and low dielectric loss, and also expands the application space of graphene-based fillers.

178 citations

Journal ArticleDOI
T. Tanaka1, T. Imai2
TL;DR: This paper reviewed advances in polymer nanodielectrics over the past 50 years, using colloid science, polymer composite technology, and nanotechnology, and concluded that despite rapid progress during the past 10 years, interdisciplinary investigation is needed to yield additional benefit to society.
Abstract: Advances in polymer nanodielectrics over the past 50 years, using colloid science, polymer composite technology, and nanotechnology, are reviewed. Despite rapid progress during the past 10 years, interdisciplinary investigation is needed to yield additional benefit to society.

143 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the fundamental design principles of highly thermally conductive composites were discussed and the key factors influencing the thermal conductivity of polymers, such as chain structure, crystallinity, crystal form, orientation of polymer chains, and orientation of ordered domains in both thermoplastics and thermosets were addressed.

1,359 citations

Journal ArticleDOI
TL;DR: In this paper, a number of cubic crystals, two-dimensional layered materials, nanostructure networks and composites, molecular layers and surface functionalization, and aligned polymer structures are examined for potential applications as heat spreading layers and substrates, thermal interface materials, and underfill materials in future-generation electronics.

1,269 citations

Journal ArticleDOI
TL;DR: This Review presents a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications.
Abstract: Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers...

1,143 citations

Journal ArticleDOI
TL;DR: This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures.
Abstract: Study of flexible nanodielectric materials (FNDMs) with high permittivity is one of the most active academic research areas in advanced functional materials. FNDMs with excellent dielectric properties are demonstrated to show great promise as energy-storage dielectric layers in high-performance capacitors. These materials, in common, consist of nanoscale particles dispersed into a flexible polymer matrix so that both the physical/chemical characteristics of the nanoparticles and the interaction between the nanoparticles and the polymers have crucial effects on the microstructures and final properties. This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures. Possible reasons for several persistent issues are analyzed and the general strategies to realize FNDMs with excellent integral properties are summarized. The review further highlights some exciting examples of these FNDMs for power-energy-storage applications.

1,131 citations

Journal ArticleDOI
12 Nov 2013-ACS Nano
TL;DR: It is shown that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (∼30 ms response and recovery times), which opens the door to various applications, such as touchless user interfaces, which is demonstrated with a 'whistling' recognition analysis.
Abstract: Sensors allow an electronic device to become a gateway between the digital and physical worlds, and sensor materials with unprecedented performance can create new applications and new avenues for user interaction. Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (∼30 ms response and recovery times). This opens the door to various applications, such as touchless user interfaces, which we demonstrate with a ‘whistling’ recognition analysis.

738 citations