scispace - formally typeset
Search or ask a question
Author

T. Terramani

Bio: T. Terramani is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Glycine binding & Binding site. The author has an hindex of 2, co-authored 2 publications receiving 652 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Kynurenate‐type compounds inhibit glycine binding and are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site, suggesting the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.
Abstract: Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.

623 citations

Journal Article
TL;DR: The results suggest that free sulfhydryl groups allosterically modulate the affinity of the quisqualate subtype of excitatory amino acid receptors and also indicate that different types of glutamate receptors might be differentially affected by chemical modification.
Abstract: The binding of [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), a ligand for the quisqualate subtype of excitatory amino acid receptors, was measured after chemical modifications of rat brain synaptic membranes. Treatment with oxidizing or thiol-alkylating agents did not modify [3H]AMPA binding, whereas treatment with several sulfhydryl reagents produced marked increases in binding. The involvement of free sulfhydryl groups in the regulation of the properties of [3H]AMPA binding sites was suggested by the specificity of p-chloromercuribenzoic acid (PCMB), its sulfonate analog p-chloromercuriphenyl-sulfonic acid (PCMBS), and HgCl2, plus the reversal of their effects after reduction with dithiothreitol. Pretreatment of synaptic membranes with the oxidizing agent 5,59-dithiobis(2-nitrobenzoic acid) or the alkylating agent N-ethylmaleimide did not significantly affect [3H]AMPA binding but markedly reduced the enhancing effect of PCMBS. On the other hand, the increase in [3H]AMPA binding produced by PCMBS was not prevented by treatment with agonists such as quisqualate or L-glutamate and was produced equally well in resealed postsynaptic membranes with both lipophilic or nonlipophilic SH-reagents. Using filtration assays, two types of binding sites could be detected with high and low affinity for [3H]AMPA. Treatment with SH-reagents produced an increase in the Bmax for the high affinity component and a decrease in the Bmax for the low affinity component, accompanied by an increase in its affinity for the ligand. Using centrifugation assays, the same two types of sites could be detected under control conditions but treatment with SH-reagents produced an increase in affinity of the large component that prevented the analytical differentiation of the two sites. Treatment with SH-reagents also increased the binding of [3H] glutamate to the N-methyl-D-aspartate receptors but did not modify the binding of [3H]kainate to the kainate receptors or the strychnine-insensitive [3H]glycine binding. These results suggest that free sulfhydryl groups allosterically modulate the affinity of the quisqualate subtype of excitatory amino acid receptors and also indicate that different types of glutamate receptors might be differentially affected by chemical modification.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Abstract: The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.

3,044 citations

Journal ArticleDOI
03 Aug 1990-Science
TL;DR: Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library and in situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain.
Abstract: Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library. In situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain. Functional expression of the cDNAs in cultured mammalian cells generated receptors displaying alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective binding pharmacology (AMPA = quisqualate greater than glutamate greater than kainate) as well as cation channels gated by glutamate, AMPA, and kainate and blocked by 6,7-dinitroquinoxaline-2,3-dione (CNQX).

1,442 citations

Journal Article
TL;DR: It is shown that glycine enhances electrophysiological responses mediated by N-methyl-d-aspartate (NMDA)b-sensitive glutamatergic receptors through its role as a “spatially aggregating substance” to NMDA receptors.
Abstract: Since the finding by [Johnson and Ascher (1987)][1] demonstrating that glycine enhances electrophysiological responses mediated by N-methyl-d-aspartate (NMDA)b-sensitive glutamatergic receptors, considerable interest has been devoted to this topic (for reviews, see [Dingledine et al. , 1990][2]; [

646 citations

Journal ArticleDOI
TL;DR: Kynurenic acid stimulates [35S]guanosine 5′-O-(3-thiotriphosphate) binding in GPR35-expressing cells, an effect abolished by pertussis toxin treatment, and inhibits lipopolysaccharide-induced tumor necrosis factor-α secretion in peripheral blood mononuclear cells.

555 citations

Journal ArticleDOI
TL;DR: Pharmacological agents targeting specific KP enzymes can be used to normalize KP defects, show remarkable efficacy in animal models of central nervous system disorders, and offer novel therapeutic opportunities.
Abstract: Degradation of the essential amino acid tryptophan along the kynurenine pathway (KP) yields several neuroactive intermediates, including the free radical generator 3-hydroxykynurenine, the excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid, and the NMDA and alpha7 nicotinic acetylcholine receptor antagonist kynurenic acid. The ambient levels of these compounds are determined by several KP enzymes, which in the brain are preferentially localized in astrocytes and microglial cells. Normal fluctuations in the brain levels of neuroactive KP intermediates might modulate several neurotransmitter systems. Impairment of KP metabolism is functionally significant and occurs in a variety of diseases that affect the brain. Pharmacological agents targeting specific KP enzymes are now available to manipulate the concentration of neuroactive KP intermediates in the brain. These compounds can be used to normalize KP defects, show remarkable efficacy in animal models of central nervous system disorders, and offer novel therapeutic opportunities.

546 citations