scispace - formally typeset
Search or ask a question
Author

T.W. Parks

Bio: T.W. Parks is an academic researcher from Cornell University. The author has contributed to research in topics: Interpolation & Demosaicing. The author has an hindex of 23, co-authored 41 publications receiving 2465 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts, and the aliasing problem is addressed by applying filterbank techniques to 2-D directional interpolation.
Abstract: A cost-effective digital camera uses a single-image sensor, applying alternating patterns of red, green, and blue color filters to each pixel location. A way to reconstruct a full three-color representation of color images by estimating the missing pixel components in each color plane is called a demosaicing algorithm. This paper presents three inherent problems often associated with demosaicing algorithms that incorporate two-dimensional (2-D) directional interpolation: misguidance color artifacts, interpolation color artifacts, and aliasing. The level of misguidance color artifacts present in two images can be compared using metric neighborhood modeling. The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts. The aliasing problem is addressed by applying filterbank techniques to 2-D directional interpolation. The interpolation artifacts are reduced using a nonlinear iterative procedure. Experimental results using digital images confirm the effectiveness of this approach.

462 citations

Proceedings ArticleDOI
24 Nov 2003
TL;DR: A novel approach to image denoising using adaptive principal components that assumes that the image is corrupted by additive white Gaussian noise and performs well in terms of image visual fidelity and PSNR values.
Abstract: This paper presents a novel approach to image denoising using adaptive principal components. Our assumptions are that the image is corrupted by additive white Gaussian noise. The new denoising technique performs well in terms of image visual fidelity, and in terms of PSNR values, the new technique compares very well against some of the most recently published denoising algorithms.

261 citations

Proceedings ArticleDOI
24 Nov 2003
TL;DR: The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts, and the aliasing problem is addressed by applying filterbank techniques to directional interpolation.
Abstract: Most cost-effective digital camera uses a single image sensor, applying alternating patterns of red, green, and blue color filters to each pixel location. Demosaicing algorithm reconstructs a full three-color representation of color images from this sensor data. This paper identifies three inherent problems often associated with directional interpolation approach to demosaicing algorithms: misguidance color artifacts, interpolation color artifacts, and aliasing. The level of misguidance color artifacts present in two images can be compared using metric neighborhood modeling. The proposed demosaicing algorithm estimates missing pixels by interpolating in the direction with fewer color artifacts. The aliasing problem is addressed by applying filterbank techniques to directional interpolation. The interpolation artifacts are reduced using a nonlinear iterative procedure. Experimental results using digital images confirm the effectiveness of this approach.

192 citations

Journal ArticleDOI
TL;DR: The experimental results confirm that the proposed method suppresses noise (CMOS/CCD image sensor noise model) while effectively interpolating the missing pixel components, demonstrating a significant improvement in image quality when compared to treating demosaicing and denoising problems independently.
Abstract: The output image of a digital camera is subject to a severe degradation due to noise in the image sensor. This paper proposes a novel technique to combine demosaicing and denoising procedures systematically into a single operation by exploiting their obvious similarities. We first design a filter as if we are optimally estimating a pixel value from a noisy single-color (sensor) image. With additional constraints, we show that the same filter coefficients are appropriate for color filter array interpolation (demosaicing) given noisy sensor data. The proposed technique can combine many existing denoising algorithms with the demosaicing operation. In this paper, a total least squares denoising method is used to demonstrate the concept. The algorithm is tested on color images with pseudorandom noise and on raw sensor data from a real CMOS digital camera that we calibrated. The experimental results confirm that the proposed method suppresses noise (CMOS/CCD image sensor noise model) while effectively interpolating the missing pixel components, demonstrating a significant improvement in image quality when compared to treating demosaicing and denoising problems independently

151 citations

Journal ArticleDOI
TL;DR: The time-varying problem of wavelet transforms is addressed, and a new translation-invariant wavelet representation algorithm is proposed that can reduce the distortion substantially, if the input signals are transients that are sensitive to time shifts.
Abstract: We address the time-varying problem of wavelet transforms, and a new translation-invariant wavelet representation algorithm is proposed. Using the algorithm introduced by Beylkin (see SIAM J. Numer. Anal., vol. 29, p.1716-1740, 1992), we compute the wavelet transform for all the circular time shifts of a length-N signal in O(N log N) operations. The wavelet coefficients of the time shift with minimal cost are selected as the best representation of the signal using a binary tree search algorithm with an appropriate cost function. We apply the translation-invariant representation algorithm to a geoacoustic data compression application. The results show that the new algorithm can reduce the distortion (the squared error in our case) substantially, if the input signals are transients that are sensitive to time shifts.

149 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An algorithm based on an enhanced sparse representation in transform domain based on a specially developed collaborative Wiener filtering achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Abstract: We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2D image fragments (e.g., blocks) into 3D data arrays which we call "groups." Collaborative Altering is a special procedure developed to deal with these 3D groups. We realize it using the three successive steps: 3D transformation of a group, shrinkage of the transform spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

7,912 citations

Book
01 Feb 2006
TL;DR: Wavelet analysis of finite energy signals and random variables and stochastic processes, analysis and synthesis of long memory processes, and the wavelet variance.
Abstract: 1. Introduction to wavelets 2. Review of Fourier theory and filters 3. Orthonormal transforms of time series 4. The discrete wavelet transform 5. The maximal overlap discrete wavelet transform 6. The discrete wavelet packet transform 7. Random variables and stochastic processes 8. The wavelet variance 9. Analysis and synthesis of long memory processes 10. Wavelet-based signal estimation 11. Wavelet analysis of finite energy signals Appendix. Answers to embedded exercises References Author index Subject index.

2,734 citations

Book
14 Aug 1997
TL;DR: This work describes the development of the Basic Multiresolution Wavelet System and some of its components, as well as some of the techniques used to design and implement these systems.
Abstract: 1 Introduction to Wavelets 2 A Multiresolution Formulation of Wavelet Systems 3 Filter Banks and the Discrete Wavelet Transform 4 Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Tight Frames, and Unconditional Bases 5 The Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coefficients 6 Regularity, Moments, and Wavelet System Design 7 Generalizations of the Basic Multiresolution Wavelet System 8 Filter Banks and Transmultiplexers 9 Calculation of the Discrete Wavelet Transform 10 Wavelet-Based Signal Processing and Applications 11 Summary Overview 12 References Bibliography Appendix A Derivations for Chapter 5 on Scaling Functions Appendix B Derivations for Section on Properties Appendix C Matlab Programs Index

2,339 citations

Journal ArticleDOI
TL;DR: This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to state-of-the-art results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper.
Abstract: Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The K-SVD has been recently proposed for this task and shown to perform very well for various grayscale image processing tasks. In this paper, we address the problem of learning dictionaries for color images and extend the K-SVD-based grayscale image denoising algorithm that appears in . This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to state-of-the-art results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper.

1,818 citations

Patent
11 Jan 2011
TL;DR: In this article, an intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions.
Abstract: An intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions. The system can be implemented using any of a number of different platforms, such as the web, email, smartphone, and the like, or any combination thereof. In one embodiment, the system is based on sets of interrelated domains and tasks, and employs additional functionally powered by external services with which the system can interact.

1,462 citations