scispace - formally typeset
Search or ask a question
Author

T. Weiss

Bio: T. Weiss is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Frequency allocation & Wireless. The author has an hindex of 7, co-authored 8 publications receiving 2329 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The technical challenges that have to be met when implementing the interesting new technology of spectrum pooling are described, which represents the coexistence of two mobile radio systems within the same frequency range.
Abstract: This article describes the technical challenges that have to be met when implementing the interesting new technology of spectrum pooling. This notion represents the coexistence of two mobile radio systems within the same frequency range. It enables the secondary utilization of already licensed frequency bands as aimed at by several regulatory authorities worldwide. The goal of spectrum pooling is to enhance spectral efficiency by overlaying a new mobile radio system on an existing one without requiring any changes to the actual licensed system. Several demanding tasks originate from this idea. Some of them have been solved in recent research projects. Others are subject to ongoing investigations. Here, the state of the art in spectrum pooling is presented.

1,268 citations

Proceedings ArticleDOI
17 May 2004
TL;DR: A quantitative comparison of both approaches to spectrum pooling aims at enabling public access to these spectral ranges without sacrificing the transmission quality of the actual license owners, and it is obvious that both approaches sacrifice bandwidth of the rental system.
Abstract: The public mobile radio spectrum has become a scarce resource while wide spectral ranges are only rarely used. Here, the new strategy called spectrum pooling is considered. It aims at enabling public access to these spectral ranges without sacrificing the transmission quality of the actual license owners. Unfortunately, using OFDM modulation in a spectrum pooling system has some drawbacks. There is an interaction between the licensed system and the OFDM based rental system due to the non-orthogonality of their respective transmit signals. This interaction is described mathematically, providing a quantitative evaluation of the mutual interference that leads to an SNR loss in both systems. However, this interference can be mitigated by windowing the OFDM signal in the time domain or by the adaptive deactivation of adjacent subcarriers providing flexible guard bands between licensed and rental system. It is obvious that both approaches sacrifice bandwidth of the rental system. A quantitative comparison of both approaches is given as a tradeoff between interference reduction and throughput in the rental system.

642 citations

Journal ArticleDOI
TL;DR: In this letter, formulas for the calculation of the detection and false alarm probability are derived for the general case of an arbitrary measurement covariance matrix, allowing for a maximum exploitation of the proposed distributed detection approach.
Abstract: The innovative new strategy of spectrum pooling enables public access to spectral ranges of already licensed yet rarely used frequency bands by overlaying a secondary mobile radio system (the rental system, RS) to an existing one (the licensed system, LS). Coexistence of both systems is realized by filling the idle time-frequency gaps of the LS. A key issue in spectrum pooling is the reliable and efficient detection of those spectral ranges that are currently accessed by the LS as those ranges have to be spared from the RS's transmission power. In this letter, formulas for the calculation of the detection and false alarm probability are derived for the general case of an arbitrary measurement covariance matrix, allowing for a maximum exploitation of the proposed distributed detection approach.

166 citations

Proceedings ArticleDOI
01 Jan 2003
TL;DR: Three methods of implementing FDE in the CDMA downlink are described: the cyclic prefix method, the zero padding method, and the overlap-cut method, which offers the possibility to build a multimode receiver for singlecarrier and multicarrier signals.
Abstract: This paper proposes a new approach to apply frequency domain equalization (FDE) in the downlink of broadband CDMA cellular systems. Equalization has been recognized as a better receiving method than the RAKE receiver for CDMA downlink systems, especially in cells with a high number of users. By performing the equalization in the frequency domain, the complexity of the equalization algorithm can be significantly reduced with the help of the FFT operation. Three methods of implementing FDE in the CDMA downlink are described: the cyclic prefix method, the zero padding method, and the overlap-cut method. In addition to its simplicity and good performance, the FDE also offers the possibility to build a multimode receiver for singlecarrier and multicarrier signals. Simulation results are presented in a TD-CDMA system with parameters taken from the UTRA-TDD standard.

131 citations

Proceedings ArticleDOI
07 Aug 2002
TL;DR: The spectrum utilization, blocking probability and forced termination probability for these two different channel access schemes are compared.
Abstract: Spectrum for mobile networks is becoming scarce and on the other hand plenty of sporadically used frequencies exist. The spectrum utilization of such spectra is very low, which is a reason to think about a way to make them available for commercial purpose without a drawback for the license owners. We recommend a strategy called spectrum pooling which is based on this idea. The notion spectrum pool was first mentioned by Mitola III (see Proc. IEEE International Workshop on Mobile Multimedia Communications, p.3-10, 1999). In a spectrum pooling system the license owner of the spectrum allows priorly specified candidate renters to use his spectrum until he needs his spectrum himself. The renters of the spectrum may be treated in two different ways. One way is that communication processes of spectrum renters can persist as long as there are channels for the processes of the license owners. The other way is that the owner has no knowledge whether the channels are occupied by renters or not and treat the channels used by renters like free channels. In both cases the renters have to measure the interference level in the channel after dedicated time intervals and have to leave the channel within the time interval T/sub p/ as soon as the interference exceeds a prior specified threshold. We compare the spectrum utilization, blocking probability and forced termination probability for these two different channel access schemes.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The novel functionalities and current research challenges of the xG networks are explained in detail, and a brief overview of the cognitive radio technology is provided and the xg network architecture is introduced.

6,608 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of spectrum sensing methodologies for cognitive radio is presented and the cooperative sensing concept and its various forms are explained.
Abstract: The spectrum sensing problem has gained new aspects with cognitive radio and opportunistic spectrum access concepts. It is one of the most challenging issues in cognitive radio systems. In this paper, a survey of spectrum sensing methodologies for cognitive radio is presented. Various aspects of spectrum sensing problem are studied from a cognitive radio perspective and multi-dimensional spectrum sensing concept is introduced. Challenges associated with spectrum sensing are given and enabling spectrum sensing methods are reviewed. The paper explains the cooperative sensing concept and its various forms. External sensing algorithms and other alternative sensing methods are discussed. Furthermore, statistical modeling of network traffic and utilization of these models for prediction of primary user behavior is studied. Finally, sensing features of some current wireless standards are given.

4,812 citations

Journal ArticleDOI
TL;DR: This paper designs the sensing duration to maximize the achievable throughput for the secondary network under the constraint that the primary users are sufficiently protected, and forms the sensing-throughput tradeoff problem mathematically, and uses energy detection sensing scheme to prove that the formulated problem indeed has one optimal sensing time which yields the highest throughput.
Abstract: In a cognitive radio network, the secondary users are allowed to utilize the frequency bands of primary users when these bands are not currently being used. To support this spectrum reuse functionality, the secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance in cognitive radio networks. There are two parameters associated with spectrum sensing: probability of detection and probability of false alarm. The higher the probability of detection, the better the primary users are protected. However, from the secondary users' perspective, the lower the probability of false alarm, the more chances the channel can be reused when it is available, thus the higher the achievable throughput for the secondary network. In this paper, we study the problem of designing the sensing duration to maximize the achievable throughput for the secondary network under the constraint that the primary users are sufficiently protected. We formulate the sensing-throughput tradeoff problem mathematically, and use energy detection sensing scheme to prove that the formulated problem indeed has one optimal sensing time which yields the highest throughput for the secondary network. Cooperative sensing using multiple mini-slots or multiple secondary users are also studied using the methodology proposed in this paper. Computer simulations have shown that for a 6 MHz channel, when the frame duration is 100 ms, and the signal-to-noise ratio of primary user at the secondary receiver is -20 dB, the optimal sensing time achieving the highest throughput while maintaining 90% detection probability is 14.2 ms. This optimal sensing time decreases when distributed spectrum sensing is applied.

2,889 citations

Journal ArticleDOI
TL;DR: An overview of challenges and recent developments in both technological and regulatory aspects of opportunistic spectrum access (OSA) is presented, and the three basic components of OSA are discussed.
Abstract: Compounding the confusion is the use of the broad term cognitive radio as a synonym for dynamic spectrum access. As an initial attempt at unifying the terminology, the taxonomy of dynamic spectrum access is provided. In this article, an overview of challenges and recent developments in both technological and regulatory aspects of opportunistic spectrum access (OSA). The three basic components of OSA are discussed. Spectrum opportunity identification is crucial to OSA in order to achieve nonintrusive communication. The basic functions of the opportunity identification module are identified

2,819 citations

Proceedings ArticleDOI
05 Dec 2005
TL;DR: This paper studies spectrum-sharing between a primary licensee and a group of secondary users and suggests that collaboration may improve sensing performance significantly.
Abstract: Traditionally, frequency spectrum is licensed to users by government agencies in a fixed manner where licensee has exclusive right to access the allocated band. This policy has been de jure practice to protect systems from mutual interference for many years. However, with increasing demand for the spectrum and scarcity of vacant bands, a spectrum policy reform seems inevitable. Meanwhile, recent measurements suggest the possibility of sharing spectrum among different parties subject to interference-protection constraints. In this paper we study spectrum-sharing between a primary licensee and a group of secondary users. In order to enable access to unused licensed spectrum, a secondary user has to monitor licensed bands and opportunistically transmit whenever no primary signal is detected. However, detection is compromised when a user experiences shadowing or fading effects. In such cases, user cannot distinguish between an unused band and a deep fade. Collaborative spectrum sensing is proposed and studied in this paper as a means to combat such effects. Our analysis and simulation results suggest that collaboration may improve sensing performance significantly

1,939 citations