scispace - formally typeset
Search or ask a question
Author

Ta-Chou Ng

Bio: Ta-Chou Ng is an academic researcher from National Taiwan University. The author has contributed to research in topics: Population & Pneumonia. The author has an hindex of 6, co-authored 8 publications receiving 703 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: High transmissibility of COVID-19 before and immediately after symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to interrupt transmission, and that more generalized measures might be required, such as social distancing.
Abstract: Importance The dynamics of coronavirus disease 2019 (COVID-19) transmissibility are yet to be fully understood. Better understanding of the transmission dynamics is important for the development and evaluation of effective control policies. Objective To delineate the transmission dynamics of COVID-19 and evaluate the transmission risk at different exposure window periods before and after symptom onset. Design, Setting, and Participants This prospective case-ascertained study in Taiwan included laboratory-confirmed cases of COVID-19 and their contacts. The study period was from January 15 to March 18, 2020. All close contacts were quarantined at home for 14 days after their last exposure to the index case. During the quarantine period, any relevant symptoms (fever, cough, or other respiratory symptoms) of contacts triggered a COVID-19 test. The final follow-up date was April 2, 2020. Main Outcomes and Measures Secondary clinical attack rate (considering symptomatic cases only) for different exposure time windows of the index cases and for different exposure settings (such as household, family, and health care). Results We enrolled 100 confirmed patients, with a median age of 44 years (range, 11-88 years), including 44 men and 56 women. Among their 2761 close contacts, there were 22 paired index-secondary cases. The overall secondary clinical attack rate was 0.7% (95% CI, 0.4%-1.0%). The attack rate was higher among the 1818 contacts whose exposure to index cases started within 5 days of symptom onset (1.0% [95% CI, 0.6%-1.6%]) compared with those who were exposed later (0 cases from 852 contacts; 95% CI, 0%-0.4%). The 299 contacts with exclusive presymptomatic exposures were also at risk (attack rate, 0.7% [95% CI, 0.2%-2.4%]). The attack rate was higher among household (4.6% [95% CI, 2.3%-9.3%]) and nonhousehold (5.3% [95% CI, 2.1%-12.8%]) family contacts than that in health care or other settings. The attack rates were higher among those aged 40 to 59 years (1.1% [95% CI, 0.6%-2.1%]) and those aged 60 years and older (0.9% [95% CI, 0.3%-2.6%]). Conclusions and Relevance In this study, high transmissibility of COVID-19 before and immediately after symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to contain the epidemic, and more generalized measures may be required, such as social distancing.

742 citations

Posted ContentDOI
16 Sep 2020-medRxiv
TL;DR: For symptomatic individuals, the timing of transmission of SARS-CoV-2 is more strongly linked to the onset of clinical symptoms of COVID-19 than to the time since infection, and the pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods.
Abstract: The timing of SARS-CoV-2 transmission is a critical factor to understand the epidemic trajectory and the impact of isolation, contact tracing and other non- pharmaceutical interventions on the spread of COVID-19 epidemics. We examined the distribution of transmission events with respect to exposure and onset of symptoms. We show that for symptomatic individuals, the timing of transmission of SARS-CoV-2 is more strongly linked to the onset of clinical symptoms of COVID-19 than to the time since infection. We found that it was approximately centered and symmetric around the onset of symptoms, with three quarters of events occurring in the window from 2-3 days before to 2-3 days after. However, we caution against overinterpretation of the right tail of the distribution, due to its dependence on behavioural factors and interventions. We also found that the pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods. This strongly suggests that information about when a case was infected should be collected where possible, in order to assess how far into the past their contacts should be traced. Overall, the fraction of transmission from strictly pre-symptomatic infections was high (41%; 95%CI 31-50%), which limits the efficacy of symptom-based interventions, and the large fraction of transmissions (35%; 95%CI 26-45%) that occur on the same day or the day after onset of symptoms underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if they are mild. Rapid or at-home testing and contextual risk information would greatly facilitate efficient early isolation.

86 citations

Posted ContentDOI
19 Mar 2020-medRxiv
TL;DR: High transmissibility of COVID-19 near symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to contain the epidemic, and more generalized social distancing measures are required.
Abstract: Background The dynamics of coronavirus disease 2019 (COVID-19) transmissibility after symptom onset remains unknown. Methods We conducted a prospective case-ascertained study on laboratory-confirmed COVID-19 cases and their contacts. Secondary clinical attack rate (considering symptomatic cases only) was analyzed for different exposure windows after symptom onset of index cases and for different exposure settings. Results Thirty-two confirmed patients were enrolled and 12 paired data (index-secondary cases) were identified among the 1,043 contacts. The secondary clinical attack rate was 0.9% (95% CI 0.5–1.7%). The attack rate was higher among those whose exposure to index cases started within five days of symptom onset (2.4%, 95% CI 1.1–4.5%) than those who were exposed later (zero case from 605 close contacts, 95% CI 0–0.61%). The attack rate was also higher among household contacts (13.6%, 95% CI 4.7–29.5%) and non- household family contacts (8.5%, 95% CI 2.4–20.3%) than that in healthcare or other settings. The higher secondary clinical attack rate for contacts near symptom onset remained when the analysis was restricted to household and family contacts. There was a trend of increasing attack rate with the age of contacts (p for trend Conclusions High transmissibility of COVID-19 near symptom onset suggests that finding and isolating symptomatic patients alone may not suffice to contain the epidemic, and more generalized social distancing measures are required. Rapid reduction of transmissibility over time implies that prolonged hospitalization of mild cases might not be necessary in large epidemics.

59 citations

Journal ArticleDOI
TL;DR: The timing of transmission of SARS-CoV-2 was more directly linked to the onset of clinical symptoms of COVID-19 than to the time since infection, which underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if mild.
Abstract: Background: The timing of SARS-CoV-2 transmission is a critical factor to understand the epidemic trajectory and the impact of isolation, contact tracing and other non-pharmaceutical interventions on the spread of COVID-19 epidemics. Methods: We examined the distribution of transmission event times with respect to exposure and onset of symptoms. We analysed 119 transmission pairs with known date of onset of symptoms for both index and secondary cases and partial information on their intervals of exposure. We inferred the distribution for generation time and time from onset of symptoms to transmission by maximum likelihood. We modelled different relations between time of infection, onset of symptoms and transmission, inferring the most appropriate one according to the Akaike Information Criterion. Finally, we estimated the fraction of pre-symptomatic and early symptomatic transmissions among all pairs using a Bayesian approach. Findings: For symptomatic individuals, the timing of transmission of SARS-CoV-2 was more directly linked to the onset of clinical symptoms of COVID-19 than to the time since infection. The time of transmission was approximately centered and symmetric around the onset of symptoms, with three quarters of events occurring in the window from 2-3 days before to 2-3 days after. The pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods. Overall, the fraction of transmission from strictly pre-symptomatic infections was high (41%; 95%CI 31-50%), but a comparably large fraction of transmissions occurred on the same day as the onset of symptoms or the next day (35%; 95%CI 26-45%). We caution against overinterpretation of the fraction and timing of late symptomatic transmissions, due to their dependence on behavioural factors and interventions. Interpretation: Infectiousness is causally driven by the onset of symptoms. Public health authorities should reassess their policies on the contact tracing window in the light of individual variability in presymptomatic infectious period. Information about when a case was infected should be collected where possible, in order to assess how far into the past their contacts should be traced. The large fraction of transmission from strictly pre-symptomatic infections limits the efficacy of symptom-based interventions, while the large fraction of early symptomatic transmissions underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if mild. Rapid or at-home testing and contextual risk information could greatly facilitate efficient early isolation. Funding Statement: The study was funded by an award from the Li Ka Shing Foundation to CF. Declaration of Interests: None of the authors have competing financial or non-financial interests.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared and evaluated the effectiveness of case-based and population-based interventions for COVID-19 in Taiwan, and estimated that case detection, contact tracing, and 14-day quarantine of close contacts (regardless of symptoms) were estimated to decrease the reproduction number from the counterfactual value of 2.50 to 1.53.
Abstract: Importance Taiwan is one of the few countries with initial success in COVID-19 control without strict lockdown or school closure. The reasons remain to be fully elucidated. Objective To compare and evaluate the effectiveness of case-based (including contact tracing and quarantine) and population-based (including social distancing and facial masking) interventions for COVID-19 in Taiwan. Design, Setting, and Participants This comparative effectiveness study used a stochastic branching process model using COVID-19 epidemic data from Taiwan, an island nation of 23.6 million people, with no locally acquired cases of COVID-19 reported for 253 days between April and December 2020. Main Outcomes and Measures Effective reproduction number of COVID-19 cases (the number of secondary cases generated by 1 primary case) and the probability of outbreak extinction (0 new cases within 20 generations). For model development and calibration, an estimation of the incubation period (interval from exposure to symptom onset), serial interval (time between symptom onset in an infector-infectee pair), and the statistical distribution of the number of any subsequent infections generated by 1 primary case was calculated. Results This study analyzed data from 158 confirmed COVID-19 cases (median age, 45 years; interquartile range, 25-55 years; 84 men [53%]). An estimated 55% (95% credible interval [CrI], 41%-68%) of transmission events occurred during the presymptomatic stage. In our estimated analysis, case detection, contact tracing, and 14-day quarantine of close contacts (regardless of symptoms) was estimated to decrease the reproduction number from the counterfactual value of 2.50 to 1.53 (95% CrI, 1.50-1.57), which would not be sufficient for epidemic control, which requires a value of less than 1. In our estimated analysis, voluntary population-based interventions, if used alone, were estimated to have reduced the reproduction number to 1.30 (95% CrI, 1.03-1.58). Combined case-based and population-based interventions were estimated to reduce the reproduction number to below unity (0.85; 95% CrI, 0.78-0.89). Results were similar for additional analyses with influenza data and sensitivity analyses. Conclusions and Relevance In this comparative effectiveness research study, the combination of case-based and population-based interventions (with wide adherence) may explain the success of COVID-19 control in Taiwan in 2020. Either category of interventions alone would have been insufficient, even in a country with an effective public health system and comprehensive contact tracing program. Mitigating the COVID-19 pandemic requires the collaborative effort of public health professionals and the general public.

28 citations


Cited by
More filters
Journal ArticleDOI
25 Aug 2020-JAMA
TL;DR: This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19, the novel severe acute respiratory syndrome coronavirus 2 pandemic that has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease.
Abstract: Importance The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19. Observations SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies. Conclusions and Relevance As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

3,371 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived.
Abstract: Summary Background Viral load kinetics and duration of viral shedding are important determinants for disease transmission. We aimed to characterise viral load dynamics, duration of viral RNA shedding, and viable virus shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various body fluids, and to compare SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) viral dynamics. Methods In this systematic review and meta-analysis, we searched databases, including MEDLINE, Embase, Europe PubMed Central, medRxiv, and bioRxiv, and the grey literature, for research articles published between Jan 1, 2003, and June 6, 2020. We included case series (with five or more participants), cohort studies, and randomised controlled trials that reported SARS-CoV-2, SARS-CoV, or MERS-CoV infection, and reported viral load kinetics, duration of viral shedding, or viable virus. Two authors independently extracted data from published studies, or contacted authors to request data, and assessed study quality and risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist tools. We calculated the mean duration of viral shedding and 95% CIs for every study included and applied the random-effects model to estimate a pooled effect size. We used a weighted meta-regression with an unrestricted maximum likelihood model to assess the effect of potential moderators on the pooled effect size. This study is registered with PROSPERO, CRD42020181914. Findings 79 studies (5340 individuals) on SARS-CoV-2, eight studies (1858 individuals) on SARS-CoV, and 11 studies (799 individuals) on MERS-CoV were included. Mean duration of SARS-CoV-2 RNA shedding was 17·0 days (95% CI 15·5–18·6; 43 studies, 3229 individuals) in upper respiratory tract, 14·6 days (9·3–20·0; seven studies, 260 individuals) in lower respiratory tract, 17·2 days (14·4–20·1; 13 studies, 586 individuals) in stool, and 16·6 days (3·6–29·7; two studies, 108 individuals) in serum samples. Maximum shedding duration was 83 days in the upper respiratory tract, 59 days in the lower respiratory tract, 126 days in stools, and 60 days in serum. Pooled mean SARS-CoV-2 shedding duration was positively associated with age (slope 0·304 [95% CI 0·115–0·493]; p=0·0016). No study detected live virus beyond day 9 of illness, despite persistently high viral loads, which were inferred from cycle threshold values. SARS-CoV-2 viral load in the upper respiratory tract appeared to peak in the first week of illness, whereas that of SARS-CoV peaked at days 10–14 and that of MERS-CoV peaked at days 7–10. Interpretation Although SARS-CoV-2 RNA shedding in respiratory and stool samples can be prolonged, duration of viable virus is relatively short-lived. SARS-CoV-2 titres in the upper respiratory tract peak in the first week of illness. Early case finding and isolation, and public education on the spectrum of illness and period of infectiousness are key to the effective containment of SARS-CoV-2. Funding None.

1,061 citations

Journal ArticleDOI
TL;DR: The first randomised controlled trial for assessment of the immunogenicity and safety of a candidate non-replicating adenovirus type-5 (Ad5)-vectored COVID-19 vaccine, aiming to determine an appropriate dose of the candidate vaccine for an efficacy study, induced significant immune responses in the majority of recipients after a single immunisation.

945 citations