scispace - formally typeset
Search or ask a question
Author

Tabea Moll

Bio: Tabea Moll is an academic researcher from Harvard University. The author has contributed to research in topics: Cell type & Melanoma. The author has an hindex of 6, co-authored 11 publications receiving 727 citations. Previous affiliations of Tabea Moll include Rockefeller University & Johns Hopkins University.

Papers
More filters
Journal ArticleDOI
01 Nov 2018-Cell
TL;DR: A resistance program expressed by malignant cells that is associated with T cell exclusion and immune evasion is identified, and this study provides a high-resolution landscape of ICI-resistant cell states, identifies clinically predictive signatures, and suggests new therapeutic strategies to overcome immunotherapy resistance.

794 citations

Journal ArticleDOI
TL;DR: IMPRES is a predictor of ICB response in melanoma which encompasses 15 pairwise transcriptomics relations between immune checkpoint genes and achieves an overall accuracy of AUC = 0.83, outperforming existing predictors and capturing almost all true responders while misclassifying less than half of the nonresponders.
Abstract: Immune checkpoint blockade (ICB) therapy provides remarkable clinical gains and has been very successful in treatment of melanoma. However, only a subset of patients with advanced tumors currently benefit from ICB therapies, which at times incur considerable side effects and costs. Constructing predictors of patient response has remained a serious challenge because of the complexity of the immune response and the shortage of large cohorts of ICB-treated patients that include both ‘omics’ and response data. Here we build immuno-predictive score (IMPRES), a predictor of ICB response in melanoma which encompasses 15 pairwise transcriptomics relations between immune checkpoint genes. It is based on two key conjectures: (i) immune mechanisms underlying spontaneous regression in neuroblastoma can predict melanoma response to ICB, and (ii) key immune interactions can be captured via specific pairwise relations of the expression of immune checkpoint genes. IMPRES is validated on nine published datasets1–6 and on a newly generated dataset with 31 patients treated with anti-PD-1 and 10 with anti-CTLA-4, spanning 297 samples in total. It achieves an overall accuracy of AUC = 0.83, outperforming existing predictors and capturing almost all true responders while misclassifying less than half of the nonresponders. Future studies are warranted to determine the value of the approach presented here in other cancer types. A gene signature identified in spontaneously regressing neuroblastoma identifies responders to immune checkpoint blockade among patients with melanoma with accuracy superior to previously reported biomarkers.

408 citations

Journal ArticleDOI
02 Sep 2021-Cell
TL;DR: In this paper, the authors found a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor.

131 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution map of the evolutionary dynamics of resistance to ICB, characterizes a de-differentiated neural-crest tumor population in melanoma immunotherapy resistance and describes site-specific differences in tumor-immune interactions via longitudinal analysis of a patient with melanoma with an unusual clinical course.
Abstract: Despite initial responses1-3, most melanoma patients develop resistance4 to immune checkpoint blockade (ICB). To understand the evolution of resistance, we studied 37 tumor samples over 9 years from a patient with metastatic melanoma with complete clinical response to ICB followed by delayed recurrence and death. Phylogenetic analysis revealed co-evolution of seven lineages with multiple convergent, but independent resistance-associated alterations. All recurrent tumors emerged from a lineage characterized by loss of chromosome 15q, with post-treatment clones acquiring additional genomic driver events. Deconvolution of bulk RNA sequencing and highly multiplexed immunofluorescence (t-CyCIF) revealed differences in immune composition among different lineages. Imaging revealed a vasculogenic mimicry phenotype in NGFRhi tumor cells with high PD-L1 expression in close proximity to immune cells. Rapid autopsy demonstrated two distinct NGFR spatial patterns with high polarity and proximity to immune cells in subcutaneous tumors versus a diffuse spatial pattern in lung tumors, suggesting different roles of this neural-crest-like program in different tumor microenvironments. Broadly, this study establishes a high-resolution map of the evolutionary dynamics of resistance to ICB, characterizes a de-differentiated neural-crest tumor population in melanoma immunotherapy resistance and describes site-specific differences in tumor-immune interactions via longitudinal analysis of a patient with melanoma with an unusual clinical course.

45 citations

Journal ArticleDOI
TL;DR: Investigation of the role of ECM remodeling by the collagenase, MT1-MMP, in conferring resistance of v-Raf murine sarcoma viral oncogene homolog B1-mutant melanoma to BRAF inhibitor (BRAFi) therapy found it pivotal to an ECM-based signaling pathway that confers resistance to BRAFi therapy.
Abstract: Purpose: The extracellular matrix (ECM) is an intriguing, yet understudied component of therapy resistance. Here, we investigated the role of ECM remodeling by the collagenase, MT1-MMP, in conferring resistance of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutant melanoma to BRAF inhibitor (BRAFi) therapy. Experimental Design: Publicly available RNA-sequencing data and reverse phase protein array were used to determine the relevance of MT1-MMP upregulation in BRAFi-resistant melanoma in patients, patient-derived xenografts, and cell line–derived tumors. Short hairpin RNA (shRNA)-mediated knockdown of MT1-MMP, inhibition via the selective MT1-MMP/MMP2 inhibitor, ND322, or overexpression of MT1-MMP was used to assess the role of MT1-MMP in mediating resistance to BRAFi. Results: MT1-MMP was consistently upregulated in posttreatment tumor samples derived from patients upon disease progression and in melanoma xenografts and cell lines that acquired resistance to BRAFi. shRNA- or ND322-mediated inhibition of MT1-MMP synergized with BRAFi leading to resensitization of resistant cells and tumors to BRAFi. The resistant phenotype depends on the ability of cells to cleave the ECM. Resistant cells seeded in MT1-MMP uncleavable matrixes were resensitized to BRAFi similarly to MT1-MMP inhibition. This is due to the inability of cells to activate integrinβ1 (ITGB1)/FAK signaling, as restoration of ITGB1 activity is sufficient to maintain resistance to BRAFi in the context of MT1-MMP inhibition. Finally, the increase in MT1-MMP in BRAFi-resistant cells is TGFβ dependent, as inhibition of TGFβ receptors I/II dampens MT1-MMP overexpression and restores sensitivity to BRAF inhibition. Conclusions: BRAF inhibition results in a selective pressure toward higher expression of MT1-MMP. MT1-MMP is pivotal to an ECM-based signaling pathway that confers resistance to BRAFi therapy.

23 citations


Cited by
More filters
Journal ArticleDOI
16 Jul 2019-Immunity
TL;DR: How tumor-promoting inflammation closely resembles inflammatory processes typically found during development, immunity, maintenance of tissue homeostasis, or tissue repair is discussed and the distinctions between tissue-protective and pro-tumorigenic inflammation are illuminated.

1,563 citations

Journal ArticleDOI
TL;DR: TMB, in concert with PD-L1 expression, has been demonstrated to be a useful biomarker for ICB selection across some cancer types; however, further prospective validation studies are required.

1,490 citations

Journal ArticleDOI
TL;DR: A better understanding of how these variables cooperate to affect tumour–host interactions is needed to optimize the implementation of precision immunotherapy.
Abstract: Checkpoint inhibitor-based immunotherapies that target cytotoxic T lymphocyte antigen 4 (CTLA4) or the programmed cell death 1 (PD1) pathway have achieved impressive success in the treatment of different cancer types. Yet, only a subset of patients derive clinical benefit. It is thus critical to understand the determinants driving response, resistance and adverse effects. In this Review, we discuss recent work demonstrating that immune checkpoint inhibitor efficacy is affected by a combination of factors involving tumour genomics, host germline genetics, PD1 ligand 1 (PDL1) levels and other features of the tumour microenvironment, as well as the gut microbiome. We focus on recently identified molecular and cellular determinants of response. A better understanding of how these variables cooperate to affect tumour-host interactions is needed to optimize the implementation of precision immunotherapy.

1,452 citations

Journal ArticleDOI
23 Jan 2020-Nature
TL;DR: It is found that the co-occurrence of tumour-associated CD8 + T cells and CD20 + B cells, and the formation of tertiary lymphoid structures, are linked with improved survival in cohorts of patients with metastatic melanoma.
Abstract: Checkpoint blockade therapies that reactivate tumour-associated T cells can induce durable tumour control and result in the long-term survival of patients with advanced cancers1. Current predictive biomarkers for therapy response include high levels of intratumour immunological activity, a high tumour mutational burden and specific characteristics of the gut microbiota2,3. Although the role of T cells in antitumour responses has thoroughly been studied, other immune cells remain insufficiently explored. Here we use clinical samples of metastatic melanomas to investigate the role of B cells in antitumour responses, and find that the co-occurrence of tumour-associated CD8+ T cells and CD20+ B cells is associated with improved survival, independently of other clinical variables. Immunofluorescence staining of CXCR5 and CXCL13 in combination with CD20 reveals the formation of tertiary lymphoid structures in these CD8+CD20+ tumours. We derived a gene signature associated with tertiary lymphoid structures, which predicted clinical outcomes in cohorts of patients treated with immune checkpoint blockade. Furthermore, B-cell-rich tumours were accompanied by increased levels of TCF7+ naive and/or memory T cells. This was corroborated by digital spatial-profiling data, in which T cells in tumours without tertiary lymphoid structures had a dysfunctional molecular phenotype. Our results indicate that tertiary lymphoid structures have a key role in the immune microenvironment in melanoma, by conferring distinct T cell phenotypes. Therapeutic strategies to induce the formation of tertiary lymphoid structures should be explored to improve responses to cancer immunotherapy.

1,027 citations

01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations