scispace - formally typeset
Search or ask a question
Author

Tad S. Sonstegard

Bio: Tad S. Sonstegard is an academic researcher from Agricultural Research Service. The author has contributed to research in topics: Population & Genome. The author has an hindex of 64, co-authored 249 publications receiving 17635 citations. Previous affiliations of Tad S. Sonstegard include University of Maryland, College Park & Bhabha Atomic Research Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: Genotypes for 38,416 markers and August 2003 genetic evaluations for 3,576 Holstein bulls born before 1999 were used to predict January 2008 daughter deviations and genomic prediction improves reliability by tracing the inheritance of genes even with small effects.

1,166 citations

Journal ArticleDOI
24 Apr 2009-Science
TL;DR: To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage and provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Abstract: To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

1,144 citations

Journal ArticleDOI
TL;DR: By using independent mapping data and conserved synteny between the cow and human genomes, this work was able to construct an assembly with excellent large-scale contiguity in which a large majority (approximately 91%) of the genome has been placed onto the 30 B. taurus chromosomes.
Abstract: Background: The genome of the domestic cow, Bos taurus, was sequenced using a mixture of hierarchical and whole-genome shotgun sequencing methods. Results: We have assembled the 35 million sequence reads and applied a variety of assembly improvement techniques, creating an assembly of 2.86 billion base pairs that has multiple improvements over previous assemblies: it is more complete, covering more of the genome; thousands of gaps have been closed; many erroneous inversions, deletions, and translocations have been corrected; and thousands of single-nucleotide errors have been corrected. Our evaluation using independent metrics demonstrates that the resulting assembly is substantially more accurate and complete than alternative versions. Conclusions: By using independent mapping data and conserved synteny between the cow and human genomes, we were able to construct an assembly with excellent large-scale contiguity in which a large majority (approximately 91%) of the genome has been placed onto the 30 B. taurus chromosomes. We constructed a new cow-human synteny map that expands upon previous maps. We also identified for the first time a portion of the B. taurus Y chromosome.

1,097 citations

Journal ArticleDOI
24 Apr 2009-PLOS ONE
TL;DR: The BovineSNP50 assay as mentioned in this paper is a custom genotyping assay for cattle that interrogates 54,001 SNP loci to support genome-wide association (GWA) applications in cattle.
Abstract: The success of genome-wide association (GWA) studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP) genotyping for the identification of quantitative trait loci (QTL) and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF) ranging from 0.24 to 0.27). The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.

894 citations

Journal ArticleDOI
Richard A. Gibbs1, Jeremy F. Taylor2, Curtis P. Van Tassell3, William Barendse4, William Barendse5, Kellye Eversole, Clare A. Gill6, Ronnie D. Green3, Debora L. Hamernik3, Steven M. Kappes3, Sigbjørn Lien7, Lakshmi K. Matukumalli3, Lakshmi K. Matukumalli8, John C. McEwan9, Lynne V. Nazareth1, Robert D. Schnabel2, George M. Weinstock1, David A. Wheeler1, Paolo Ajmone-Marsan10, Paul Boettcher11, Alexandre Rodrigues Caetano12, José Fernando Garcia13, José Fernando Garcia11, Olivier Hanotte14, Paola Mariani15, Loren C. Skow6, Tad S. Sonstegard3, John L. Williams15, John L. Williams16, Boubacar Diallo, Lemecha Hailemariam17, Mário Luiz Martinez12, C. A. Morris9, Luiz Otávio Campos da Silva12, Richard J. Spelman18, Woudyalew Mulatu14, Keyan Zhao19, Colette A. Abbey6, Morris Agaba14, Flábio R. Araújo12, Rowan J. Bunch5, Rowan J. Bunch4, James O. Burton16, C. Gorni15, Hanotte Olivier15, Blair E. Harrison5, Blair E. Harrison4, Bill Luff, Marco Antonio Machado12, Joel Mwakaya14, Graham Plastow20, Warren Sim4, Warren Sim5, Timothy P. L. Smith3, Merle B Thomas5, Merle B Thomas4, Alessio Valentini21, Paul D. Williams5, James E. Womack6, John Woolliams16, Yue Liu1, Xiang Qin1, Kim C. Worley1, Chuan Gao6, Huaiyang Jiang1, Stephen S. Moore20, Yanru Ren1, Xingzhi Song1, Carlos Bustamante19, Ryan D. Hernandez19, Donna M. Muzny1, Shobha Patil1, Anthony San Lucas1, Qing Fu1, Matthew Peter Kent7, Richard Vega1, Aruna Matukumalli3, Sean McWilliam4, Sean McWilliam5, Gert Sclep15, Katarzyna Bryc19, Jung-Woo Choi6, Hong Gao19, John J. Grefenstette8, Brenda M. Murdoch20, Alessandra Stella15, Rafael Villa-Angulo8, Mark G. Wright19, Jan Aerts22, Jan Aerts16, Oliver C. Jann16, Riccardo Negrini10, Michael E. Goddard23, Michael E. Goddard24, Ben J. Hayes24, Daniel G. Bradley25, Marcos V.B. da Silva12, Marcos V.B. da Silva3, Lilian P.L. Lau25, George E. Liu3, David J. Lynn25, David J. Lynn26, Francesca Panzitta15, Ken G. Dodds9 
24 Apr 2009-Science
TL;DR: Data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation.
Abstract: The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.

769 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences, is presented, demonstrating that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences or Oxford Nanopore technologies.
Abstract: Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.

4,806 citations