scispace - formally typeset
Search or ask a question
Author

Tae Won Noh

Bio: Tae Won Noh is an academic researcher from Seoul National University. The author has contributed to research in topics: Thin film & Ferroelectricity. The author has an hindex of 49, co-authored 268 publications receiving 11057 citations. Previous affiliations of Tae Won Noh include Cornell University & Ohio State University.


Papers
More filters
Journal ArticleDOI
14 Oct 1999-Nature
TL;DR: In this paper, the authors show that lanthanum-substituted bismuth titanate (SBT) thin films provide a promising alternative for FRAM applications, since they are fatigue-free on metal electrodes, they can be deposited at temperatures of ∼650°C and their values of Pr are larger than those of the SBT films.
Abstract: Non-volatile memory devices are so named because they retain information when power is interrupted; thus they are important computer components. In this context, there has been considerable recent interest1,2 in developing non-volatile memories that use ferroelectric thin films—‘ferroelectric random access memories’, or FRAMs—in which information is stored in the polarization state of the ferroelectric material. To realize a practical FRAM, the thin films should satisfy the following criteria: compatibility with existing dynamic random access memory technologies, large remnant polarization (Pr) and reliable polarization-cycling characteristics. Early work focused on lead zirconate titanate (PZT) but, when films of this material were grown on metal electrodes, they generally suffered from a reduction of Pr (‘fatigue’) with polarity switching. Strontium bismuth tantalate (SBT) and related oxides have been proposed to overcome the fatigue problem3, but such materials have other shortcomings, such as a high deposition temperature. Here we show that lanthanum-substituted bismuth titanate thin films provide a promising alternative for FRAM applications. The films are fatigue-free on metal electrodes, they can be deposited at temperatures of ∼650 °C and their values of Pr are larger than those of the SBT films.

2,008 citations

Journal ArticleDOI
TL;DR: The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.
Abstract: We report on nanoscale strain gradients in ferroelectric HoMnO(3) epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field, and discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS.
Abstract: Resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ∼50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor in determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.

341 citations

Journal ArticleDOI
TL;DR: Noh et al. as discussed by the authors proposed a percolation model based on a network of circuit breakers with two switchable metastable states to explain the reversible resistance switching behavior in polycrystalline TiO2 thin capacitors.
Abstract: The existence of reversible resistance switching (RS) behaviors induced by electric stimulus has been known for some time, and these intriguing physical phenomena have been observed in numerous materials, including oxides. As conventional charge-based random access memory is expected to face a size limit in the near future, a surge of renewed interest has been developed in RS phenomena for possible applications in small nonvolatile memory devices called resistance random access memory (RRAM). Of particular interest is unipolar RS, which shows the RS at two values of applied voltage of the same polarity. The unipolar RS exhibits a much larger resistance change than other RS phenomena, and this greatly simplifies the process of reading the memory state. When fabricated with oxide p-n diodes, memory cells using unipolar RS can be stacked vertically, which has the potential for dramatically increasing memory density. Therefore, unipolar RRAM may be a good candidate for multi-stacked, high density, nonvolatile memory. The most important scientific and technical issues concerning unipolar RS are how it works and the identification of its controlling parameters. Some studies have reported that unipolar RS comes from a homogeneous/inhomogeneous transition of current distribution, while others maintain that it comes from the formation and rupture of conducting filaments. Even with recent extensive studies on unipolar RS, its basic origin is still far from being understood. In addition, no model exists that actually explains how the reversible switching can occur at two values of applied voltage. This lack of a quantitative model poses a major barrier for unipolar RRAM applications. In this study, we describe RS behavior in polycrystalline TiO2 film. To explain the basic mechanism of unipolar RS behavior, we propose a new percolation model based on a network of ‘‘circuit breakers’’ with two switchable metastable states. The random circuit breaker (RCB) network model can explain the long-standing material issue of how unipolar RS occurs. This simple percolation model is different from the conventional percolation models, which have dealt only with static or irreversible dynamic processes. In addition, the RCB network model provides an indication of how to overcome the substantial distribution of switching voltages, which is currently considered the most serious obstacle to practical unipolar RRAM applications. The unipolar RS phenomenon can be explained by the current (I)-voltage (V) curves in Figure 1a, which are derived from measurements of our polycrystalline TiO2 thin capacitors. At the pristine state (green dot), they are in an insulating state. As the external voltage Vext increases from zero and reaches a threshold voltage Vforming, a sudden increase occurs in the current. If the current is not limited to a certain value, here called the compliance current Icomp, the TiO2 capacitor would experience a dielectric breakdown and be destroyed. However, [*] Prof. T. W. Noh, S. C. Chae, S. B. Lee, S. H Chang, Dr. C. Liu ReCOE & FPRD, Department of Physics and Astronomy Seoul National University Seoul 151-747 (Korea) E-mail: twnoh@snu.ac.kr

320 citations

Journal Article
TL;DR: Noh et al. as mentioned in this paper proposed a percolation model based on a network of circuit breakers with two switchable metastable states to explain the reversible resistance switching behavior in polycrystalline TiO2 thin capacitors.
Abstract: The existence of reversible resistance switching (RS) behaviors induced by electric stimulus has been known for some time, and these intriguing physical phenomena have been observed in numerous materials, including oxides. As conventional charge-based random access memory is expected to face a size limit in the near future, a surge of renewed interest has been developed in RS phenomena for possible applications in small nonvolatile memory devices called resistance random access memory (RRAM). Of particular interest is unipolar RS, which shows the RS at two values of applied voltage of the same polarity. The unipolar RS exhibits a much larger resistance change than other RS phenomena, and this greatly simplifies the process of reading the memory state. When fabricated with oxide p-n diodes, memory cells using unipolar RS can be stacked vertically, which has the potential for dramatically increasing memory density. Therefore, unipolar RRAM may be a good candidate for multi-stacked, high density, nonvolatile memory. The most important scientific and technical issues concerning unipolar RS are how it works and the identification of its controlling parameters. Some studies have reported that unipolar RS comes from a homogeneous/inhomogeneous transition of current distribution, while others maintain that it comes from the formation and rupture of conducting filaments. Even with recent extensive studies on unipolar RS, its basic origin is still far from being understood. In addition, no model exists that actually explains how the reversible switching can occur at two values of applied voltage. This lack of a quantitative model poses a major barrier for unipolar RRAM applications. In this study, we describe RS behavior in polycrystalline TiO2 film. To explain the basic mechanism of unipolar RS behavior, we propose a new percolation model based on a network of ‘‘circuit breakers’’ with two switchable metastable states. The random circuit breaker (RCB) network model can explain the long-standing material issue of how unipolar RS occurs. This simple percolation model is different from the conventional percolation models, which have dealt only with static or irreversible dynamic processes. In addition, the RCB network model provides an indication of how to overcome the substantial distribution of switching voltages, which is currently considered the most serious obstacle to practical unipolar RRAM applications. The unipolar RS phenomenon can be explained by the current (I)-voltage (V) curves in Figure 1a, which are derived from measurements of our polycrystalline TiO2 thin capacitors. At the pristine state (green dot), they are in an insulating state. As the external voltage Vext increases from zero and reaches a threshold voltage Vforming, a sudden increase occurs in the current. If the current is not limited to a certain value, here called the compliance current Icomp, the TiO2 capacitor would experience a dielectric breakdown and be destroyed. However, [*] Prof. T. W. Noh, S. C. Chae, S. B. Lee, S. H Chang, Dr. C. Liu ReCOE & FPRD, Department of Physics and Astronomy Seoul National University Seoul 151-747 (Korea) E-mail: twnoh@snu.ac.kr

302 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
29 Jan 2004-Nature
TL;DR: A model interface is examined between two insulating perovskite oxides—LaAlO3 and SrTiO3—in which the termination layer at the interface is controlled on an atomic scale, presenting a broad opportunity to tailor low-dimensional charge states by atomically engineered oxide heteroepitaxy.
Abstract: Polarity discontinuities at the interfaces between different crystalline materials (heterointerfaces) can lead to nontrivial local atomic and electronic structure, owing to the presence of dangling bonds and incomplete atomic coordinations. These discontinuities often arise in naturally layered oxide structures, such as the superconducting copper oxides and ferroelectric titanates, as well as in artificial thin film oxide heterostructures such as manganite tunnel junctions. If polarity discontinuities can be atomically controlled, unusual charge states that are inaccessible in bulk materials could be realized. Here we have examined a model interface between two insulating perovskite oxides--LaAlO3 and SrTiO3--in which we control the termination layer at the interface on an atomic scale. In the simple ionic limit, this interface presents an extra half electron or hole per two-dimensional unit cell, depending on the structure of the interface. The hole-doped interface is found to be insulating, whereas the electron-doped interface is conducting, with extremely high carrier mobility exceeding 10,000 cm2 V(-1) s(-1). At low temperature, dramatic magnetoresistance oscillations periodic with the inverse magnetic field are observed, indicating quantum transport. These results present a broad opportunity to tailor low-dimensional charge states by atomically engineered oxide heteroepitaxy.

3,977 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations