scispace - formally typeset
Search or ask a question
Author

Tae-Woo Lee

Bio: Tae-Woo Lee is an academic researcher from Seoul National University. The author has contributed to research in topics: Perovskite (structure) & Layer (electronics). The author has an hindex of 66, co-authored 435 publications receiving 20363 citations. Previous affiliations of Tae-Woo Lee include Samsung & KAIST.


Papers
More filters
Journal ArticleDOI
04 Dec 2015-Science
TL;DR: Efficient organic-inorganic perovskite light-emitting diodes were made with nanograin crystals that lack metallic lead, which helped to confine excitons and avoid their quenching.
Abstract: Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

2,295 citations

Journal ArticleDOI
TL;DR: In this paper, a high-work-function, low-sheet-resistance graphene anode was used to improve the luminous efficiency of organic light-emitting diodes (OLEDs).
Abstract: Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes1,2,3,4. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W–1 in fluorescent OLEDs, 102.7 lm W–1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W–1 in fluorescent OLEDs, 85.6 lm W–1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics. By replacing conventional indium tin oxide (ITO) anodes with high-work-function, low-sheet-resistance graphene anodes, researchers demonstrate flexible fluorescent organic LEDs with extremely high luminous efficiencies of 37.2 lm W–1 for fluorescent devices and 102.7 lm W–1 for phosphorescent devices. These values are significantly higher than those of optimized organic LEDs based on ITO anodes.

1,273 citations

Journal ArticleDOI
TL;DR: Bright organic/inorganic hybrid perov-skite light-emitting diodes are realized by using CH3 NH3 PbBr3 as an emitting layer and self-organized buffer hole-injection layer (Buf-HIL) to facilitate hole injection.
Abstract: Bright organic/inorganic hybrid perov-skite light-emitting diodes (PrLEDs) are realized by using CH3 NH3 PbBr3 as an emitting layer and self-organized buffer hole-injection layer (Buf-HIL). The PrLEDs show high luminance, current efficiency, and EQE of 417 cd m(-2) , 0.577 cd A(-1) , and 0.125%, respectively. Buf-HIL can facilitate hole injection into CH3 NH3 PbBr3 as well as block exciton quenching.

1,036 citations

Journal ArticleDOI
01 Jun 2018-Science
TL;DR: Flexible organic electronics are used to mimic the functions of a biological afferent nerve and construct a hybrid bioelectronic reflex arc to actuate muscles that has potential applications in neurorobotics and neuroprosthetics.
Abstract: The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.

856 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the device structures adopted to achieve high performance solution processed organic light-emitting diodes, the development of solution processable small molecules, and the comparisons of the different nature of the films and devices fabricated by solution-process or vacuum deposition.
Abstract: Organic light-emitting diodes (OLEDs) based on vacuum deposited small molecules have undergone significant progress since the first efficient double-layered OLEDs were reported in 1987 by Tang and Van Slyke. Recently, solution processed small molecular OLEDs are also drawing more and more research attention, as such a technology combines advantages of the facile synthesis of small molecules and the low-cost solution process like polymers. The performance of OLEDs made by solution process is gradually catching up with their vacuum deposited counterparts. This feature article will review the device structures adopted to achieve high performance solution processed OLEDs, the development of solution processable small molecules, and the comparisons of the different nature of the films and devices fabricated by solution-process or by vacuum deposition. Finally, the prospects and remaining problems will be discussed.

565 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: By applying specific fabrication conditions summarized in the Experimental section and post-production annealing at 150°C, polymer solar cells with power-conversion efficiency approaching 5% were demonstrated.
Abstract: By applying the specific fabrication conditions summarized in the Experimental section and post-production annealing at 150 °C, polymer solar cells with power-conversion efficiency approaching 5 % are demonstrated. These devices exhibit remarkable thermal stability. We attribute the improved performance to changes in the bulk heterojunction material induced by thermal annealing. The improved nanoscale morphology, the increased crystallinity of the semiconducting polymer, and the improved contact to the electron-collecting electrode facilitate charge generation, charge transport to, and charge collection at the electrodes, thereby enhancing the device efficiency by lowering the series resistance of the polymer solar cells.

4,513 citations

Journal ArticleDOI
14 Oct 2016-Science
TL;DR: This work shows that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties and achieved stabilized efficiencies of up to 21.6% on small areas.
Abstract: All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb + ) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.

3,034 citations