scispace - formally typeset
Search or ask a question
Author

Taeyoon Lee

Bio: Taeyoon Lee is an academic researcher from Yonsei University. The author has contributed to research in topics: Thin film & Layer (electronics). The author has an hindex of 34, co-authored 127 publications receiving 4448 citations. Previous affiliations of Taeyoon Lee include University of Illinois at Urbana–Champaign & Korea Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials that exhibits superior sensitivity, very fast response time, and high stability when applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.
Abstract: A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.

884 citations

Journal ArticleDOI
TL;DR: In this article, an AgNW-embedded styrene-butadiene-styrene (SBS) elastomeric matrix is fabricated by a simple wet spinning method.
Abstract: Stretchable conductive fi bers have received signifi cant attention due to their possibility of being utilized in wearable and foldable electronics. Here, highly stretchable conductive fi ber composed of silver nanowires (AgNWs) and silver nanoparticles (AgNPs) embedded in a styrene‐butadiene‐styrene (SBS) elastomeric matrix is fabricated. An AgNW-embedded SBS fi ber is fabricated by a simple wet spinning method. Then, the AgNPs are formed on both the surface and inner region of the AgNW-embedded fi ber via repeated cycles of silver precursor absorption and reduction processes. The AgNW-embedded conductive fi ber exhibits superior initial electrical conductivity ( σ 0 = 2450 S cm −1 ) and elongation at break (900% strain) due to the high weight percentage of the conductive fi llers and the use of a highly stretchable SBS elastomer matrix. During the stretching, the embedded AgNWs act as conducting bridges between AgNPs, resulting in the preservation of electrical conductivity under high strain (the rate of conductivity degradation, σ / σ 0 = 4.4% at 100% strain). The AgNW-embedded conductive fi bers show the strain-sensing behavior with a broad range of applied tensile strain. The AgNW reinforced highly stretchable conductive fi bers can be embedded into a smart glove for detecting sign language by integrating fi ve composite fi bers in the glove, which can successfully perceive human motions.

472 citations

Journal ArticleDOI
05 Oct 2016-ACS Nano
TL;DR: This work demonstrates the improvement of gas-sensing performance of large-area tungsten disulfide (WS2) nanosheets through surface functionalization using Ag nanowires (NWs) to improve 2D TMDC gas sensors.
Abstract: Semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) are promising gas-sensing materials due to their large surface-to-volume ratio. However, their poor gas-sensing performance resulting from the low response, incomplete recovery, and insufficient selectivity hinders the realization of high-performance 2D TMDC gas sensors. Here, we demonstrate the improvement of gas-sensing performance of large-area tungsten disulfide (WS2) nanosheets through surface functionalization using Ag nanowires (NWs). Large-area WS2 nanosheets were synthesized through atomic layer deposition of WO3 followed by sulfurization. The pristine WS2 gas sensors exhibited a significant response to acetone and NO2 but an incomplete recovery in the case of NO2 sensing. After AgNW functionalization, the WS2 gas sensor showed dramatically improved response (667%) and recovery upon NO2 exposure. Our results establish that the proposed method is a promising strategy to improve 2D TMDC gas sensors.

315 citations

Journal ArticleDOI
TL;DR: In this article, a bioinspired porous dielectric layer is used, resulting in high-performance pressure sensors with high sensitivity (0.63 kPa−1), high stability over 10 000 cycles, fast response and relaxation times, and extremely low-pressure detection of 2.42 Pa.
Abstract: A flexible pressure sensor with high performances is one of the promising candidates for achieving electronic skins (E-skin) related to various applications such as wearable devices, health monitoring systems, and artificial robot arms. The sensitive response for external mechanical stimulation is fundamentally required to develop the E-skin which imitates the function of human skin. The performance of capacitive pressure sensors can be improved using morphologies and structures occurring in nature. In this work, highly sensitive capacitive pressure sensors based on a porous structure of polydimethylsiloxane (PDMS) thin film, inspired on the natural multilayered porous structures seen in mushrooms, diatoms, and spongia offilinalis, have been developed and evaluated. A bioinspired porous dielectric layer is used, resulting in high-performance pressure sensors with high sensitivity (0.63 kPa−1), high stability over 10 000 cycles, fast response and relaxation times, and extremely low-pressure detection of 2.42 Pa. Additionally, the resulting pressure sensors are demonstrated to fabricate multipixel arrays, thus achieving successful real-time tactile sensing of various touch shapes. The developed high-performance flexible pressure sensors may open new opportunities for innovative applications in advanced human-machine interface systems, robotic sensory systems, and various wearable health monitoring devices.

245 citations

Journal ArticleDOI
TL;DR: The recent process of 1D stretchable electrodes for wearable and textile electronics is described, focusing on representative conductive materials, fabrication techniques for 1DStretchable electrodes with high performance, and designs and applications of various 1D Stretchable electronic devices.
Abstract: Research on wearable electronic devices that can be directly integrated into daily textiles or clothes has been explosively grown holding great potential for various practical wearable applications. These wearable electronic devices strongly demand 1D electronic devices that are light-weight, weavable, highly flexible, stretchable, and adaptable to comport to frequent deformations during usage in daily life. To this end, the development of 1D electrodes with high stretchability and electrical performance is fundamentally essential. Herein, the recent process of 1D stretchable electrodes for wearable and textile electronics is described, focusing on representative conductive materials, fabrication techniques for 1D stretchable electrodes with high performance, and designs and applications of various 1D stretchable electronic devices. To conclude, discussions are presented regarding limitations and perspectives of current materials and devices in terms of performance and scientific understanding that should be considered for further advances.

219 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Abstract: Materials research plays a vital role in transforming breakthrough scientific ideas into next-generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research in plasmonics and metamaterials lacks good material building blocks in order to realize useful devices. Such devices suffer from many drawbacks arising from the undesirable properties of their material building blocks, especially metals. There are many materials, other than conventional metallic components such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D materials such as graphene. This review provides a summary of the recent developments in the search for better plasmonic materials and an outlook of further research directions.

1,836 citations

Journal ArticleDOI
TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Abstract: Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.

1,469 citations

Journal ArticleDOI
TL;DR: Puurunen et al. as discussed by the authors summarized the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD.
Abstract: Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas–solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic–organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

1,160 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the status quo of X-ray photoelectron spectroscopy with a historical perspective, provide the technique's operating principles, resolve myths associated with C 1s referencing, and offer a comprehensive account of recent findings.

1,108 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights the recent progress of the state-of-the-art research on synthesis, characterization and isolation of single and few layer nanosheets and their assembly.

1,090 citations