scispace - formally typeset
Search or ask a question
Author

Takao Aoki

Other affiliations: University of Tokyo, Toshiba, California Institute of Technology  ...read more
Bio: Takao Aoki is an academic researcher from Waseda University. The author has contributed to research in topics: Photon & Cavity quantum electrodynamics. The author has an hindex of 32, co-authored 126 publications receiving 6855 citations. Previous affiliations of Takao Aoki include University of Tokyo & Toshiba.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multithreshold-voltage CMOS (MTCMOS) based low-power digital circuit with 0.1-V power supply high-speed low power digital circuit technology was proposed, which has brought about logic gate characteristics of a 1.7ns propagation delay time and 0.3/spl mu/W/MHz/gate power dissipation with a standard load.
Abstract: 1-V power supply high-speed low-power digital circuit technology with 0.5-/spl mu/m multithreshold-voltage CMOS (MTCMOS) is proposed. This technology features both low-threshold voltage and high-threshold voltage MOSFET's in a single LSI. The low-threshold voltage MOSFET's enhance speed performance at a low supply voltage of 1 V or less, while the high-threshold voltage MOSFET's suppress the stand-by leakage current during the sleep period. This technology has brought about logic gate characteristics of a 1.7-ns propagation delay time and 0.3-/spl mu/W/MHz/gate power dissipation with a standard load. In addition, an MTCMOS standard cell library has been developed so that conventional CAD tools can be used to lay out low-voltage LSI's. To demonstrate MTCMOS's effectiveness, a PLL LSI based on standard cells was designed as a carrying vehicle. 18-MHz operation at 1 V was achieved using a 0.5-/spl mu/m CMOS process. >

1,338 citations

Journal ArticleDOI
12 Oct 2006-Nature
TL;DR: Strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity, and this work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators.
Abstract: Over the past decade, strong interactions of light and matter at the single-photon level have enabled a wide set of scientific advances in quantum optics and quantum information science. This work has been performed principally within the setting of cavity quantum electrodynamics with diverse physical systems, including single atoms in Fabry–Perot resonators, quantum dots coupled to micropillars and photonic bandgap cavities and Cooper pairs interacting with superconducting resonators. Experiments with single, localized atoms have been at the forefront of these advances with the use of optical resonators in high-finesse Fabry–Perot configurations. As a result of the extreme technical challenges involved in further improving the multilayer dielectric mirror coatings of these resonators and in scaling to large numbers of devices, there has been increased interest in the development of alternative microcavity systems. Here we show strong coupling between individual caesium atoms and the fields of a high-quality toroidal microresonator. From observations of transit events for single atoms falling through the resonator's evanescent field, we determine the coherent coupling rate for interactions near the surface of the resonator. We develop a theoretical model to quantify our observations, demonstrating that strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity. Our work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks, scalable quantum logic with photons, and quantum information processing on atom chips.

857 citations

Journal ArticleDOI
TL;DR: In this paper, a new numerical method is proposed for general hyperbolic equations, which uses a spatial profile interpolated with a cubic polynomial within a grid cell, and is described in an explicit finite-difference form by assuming that both a physical quantity and its spatial derivative obey the master equation.

586 citations

Journal ArticleDOI
22 Feb 2008-Science
TL;DR: This work has demonstrated a robust, efficient mechanism for the regulated transport of photons one by one using a microscopic optical resonator and verified the transformation from a Poissonian to a sub-Poissonian photon stream by photon counting measurements of the input and output fields.
Abstract: Beyond traditional nonlinear optics with large numbers of atoms and photons, qualitatively new phenomena arise in a quantum regime of strong interactions between single atoms and photons. By using a microscopic optical resonator, we achieved such interactions and demonstrated a robust, efficient mechanism for the regulated transport of photons one by one. With critical coupling of the input light, a single atom within the resonator dynamically controls the cavity output conditioned on the photon number at the input, thereby functioning as a photon turnstile. We verified the transformation from a Poissonian to a sub-Poissonian photon stream by photon counting measurements of the input and output fields. The results have applications in quantum information science, including for controlled interactions of single light quanta and for scalable quantum processing on atom chips.

564 citations

Journal ArticleDOI
TL;DR: In this article, a new numerical method is proposed for multidimensional hyperbolic equations, which uses a cubic spatial profile within grids, and is described in an explicit finite-difference form by assuming that both the physical quantity and its spatial derivative obey the master equation.

307 citations


Cited by
More filters
Journal ArticleDOI
06 Jul 2007-Science
TL;DR: A quantitative model is presented describing the power transfer of self-resonant coils in a strongly coupled regime, which matches the experimental results to within 5%.
Abstract: Using self-resonant coils in a strongly coupled regime, we experimentally demonstrated efficient nonradiative power transfer over distances up to 8 times the radius of the coils We were able to transfer 60 watts with ∼40% efficiency over distances in excess of 2 meters We present a quantitative model describing the power transfer, which matches the experimental results to within 5% We discuss the practical applicability of this system and suggest directions for further study

5,284 citations

Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the Deutsch-Jozsa algorithm for continuous variables, and a deterministic version of it is used for quantum information processing with continuous variables.
Abstract: Preface. About the Editors. Part I: Quantum Computing. 1. Quantum computing with qubits S.L. Braunstein, A.K. Pati. 2. Quantum computation over continuous variables S. Lloyd, S.L. Braunstein. 3. Error correction for continuous quantum variables S.L. Braunstein. 4. Deutsch-Jozsa algorithm for continuous variables A.K. Pati, S.L. Braunstein. 5. Hybrid quantum computing S. Lloyd. 6. Efficient classical simulation of continuous variable quantum information processes S.D. Bartlett, B.C. Sanders, S.L. Braunstein, K. Nemoto. Part II: Quantum Entanglement. 7. Introduction to entanglement-based protocols S.L. Braunstein, A.K. Pati. 8. Teleportation of continuous uantum variables S.L. Braunstein, H.J. Kimble. 9. Experimental realization of continuous variable teleportation A. Furusawa, H.J. Kimble. 10. Dense coding for continuous variables S.L. Braunstein, H.J. Kimble. 11. Multipartite Greenberger-Horne-Zeilinger paradoxes for continuous variables S. Massar, S. Pironio. 12. Multipartite entanglement for continuous variables P. van Loock, S.L. Braunstein. 13. Inseparability criterion for continuous variable systems Lu-Ming Duan, G. Giedke, J.I. Cirac, P. Zoller. 14. Separability criterion for Gaussian states R. Simon. 15. Distillability and entanglement purification for Gaussian states G. Giedke, Lu-Ming Duan, J.I. Cirac, P. Zoller. 16. Entanglement purification via entanglement swapping S. Parke, S. Bose, M.B. Plenio. 17. Bound entanglement for continuous variables is a rare phenomenon P. Horodecki, J.I. Cirac, M. Lewenstein. Part III: Continuous Variable Optical-Atomic Interfacing. 18. Atomic continuous variable processing and light-atoms quantum interface A. Kuzmich, E.S. Polzik. Part IV: Limits on Quantum Information and Cryptography. 19. Limitations on discrete quantum information and cryptography S.L. Braunstein, A.K. Pati. 20. Quantum cloning with continuous variables N.J. Cerf. 21. Quantum key distribution with continuous variables in optics T.C. Ralph. 22. Secure quantum key distribution using squeezed states D. Gottesman, J. Preskill. 23. Experimental demonstration of dense coding and quantum cryptography with continuous variables Kunchi Peng, Qing Pan, Jing Zhang, Changde Xie. 24. Quantum solitons in optical fibres: basic requisites for experimental quantum communication G. Leuchs, Ch. Silberhorn, E. Konig, P.K. Lam, A. Sizmann, N. Korolkova. Index.

2,940 citations

Journal ArticleDOI
TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.
Abstract: The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.

2,781 citations

Journal ArticleDOI

2,415 citations