scispace - formally typeset
Search or ask a question
Author

Takao Kameda

Bio: Takao Kameda is an academic researcher from Kitami Institute of Technology. The author has contributed to research in topics: Ice core & Snow. The author has an hindex of 19, co-authored 70 publications receiving 1424 citations.
Topics: Ice core, Snow, Glacier, Ice sheet, Ice stream


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.
Abstract: The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.

489 citations

Journal ArticleDOI
TL;DR: Numerical experiments showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation, and model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic.
Abstract: Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

123 citations

Journal ArticleDOI
TL;DR: In this article, the surface mass balance (SMB) at Dome Fuji, East Antarctica, was estimated using 36 bamboo stakes (grid of 6 x 6, placed at 20 m intervals) from 1995 to 2006.
Abstract: . The surface mass balance (SMB) at Dome Fuji, East Antarctica, was estimated using 36 bamboo stakes (grid of 6 x 6, placed at 20 m intervals) from 1995 to 2006. The heights of the stake tops from the snow surface were measured at 0.5 cm resolution twice monthly in 1995,1996,1997 and 2003, and once a year for the rest of the study period. To account for snow settling, the average snow density at the stake base during the measurements was used for converting the stake-height data to SMB. The annual SMB from 1995 to 2006 at Dome Fuji was 27.3 ±1.5 kg m -2 a -1 . This result agrees well with the annual SMB from AD1260 to 1993 (26.4 kg m -2 a -1 ) estimated from volcanic signals in the Dome Fuji ice core. Over the period 1995-2006, there were 37 (8.6% of the measurements) negative or zero annual SMB results. Variation in the multi-year averages of annual SMB decreased with the square root of the number of observation years, and 10 years of observations of a single stake allowed the estimation of annual SMB at ±10% accuracy. The frequency distributions of annual and monthly SMB were examined. The findings clarify the complex behavior of the annual and monthly SMB at Dome Fuji, which will be common phenomena in areas of low snow accumulation of the interior of the Antarctic ice sheet.

76 citations

Journal ArticleDOI
TL;DR: In this article, an extensive revision of Magono and Lee's (1966) classification of natural snow crystals was presented, which has been widely used in snow and ice studies to describe snow crystal shapes.

76 citations

Journal ArticleDOI
TL;DR: In this paper, the vertical and horizontal distribution of melt features (ice layers) were examined using two ice cores (206.6 and 101.5 m deep, 1 m apart) from Site J (66°51.9′ N, 46°15.6′W, 2030 m a.s.l.).
Abstract: Horizontal and vertical distributions of melt features (ice layers) were examined using two ice cores (206.6 and 101.5 m deep, 1 m apart) from Site J (66°51.9′ N, 46°15.9′W, 2030 m a.s.l.). The temperature at 10 m was −16.3°C. We observed 2804 melt features, with a total thickness of 30.32 m, in the 206.6 m core, corresponding to 16.4% by volume of the ice-equivalent core length. Horizontal distribution of melt features was examined by correlating melt-feature thicknesses in the two cores. The correlation coefficient was 0.71 (n = 514) for each melt feature in the two cores. It was maximum for data passed through 5 and 40 year low-pass filters. A significant relationship (P = 0.005, n = 36) was obtained for the vertical distribution of melt features and the June temperature on the west coast of Greenland (Jakobshavn). Using this, June temperatures at Jakobshavn since 1550 were estimated. There are three periods (1685-1705, 1835-70 and 1933-45) during which mean June temperatures clearly decreased, when they were estimated to he 0.1°, 0.4° and 0.2°C lower than the average for the whole period (1550-1989). The first two “cold” periods have been identified in melt features of the Dye 3 and Devon Island ice cores and in a tree-ring profile from Yukon Territory, Canada. Melt-feature percentages in the Site J ice core have increased since about 1945, probably reflecting summer-temperature warming on the ice sheet.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper attempts to survey and summarize the recent research and development of EMD in fault diagnosis of rotating machinery, providing comprehensive references for researchers concerning with this topic and helping them identify further research topics.

1,410 citations

Journal ArticleDOI
TL;DR: A systematic review of over 20 major time-frequency analysis methods reported in more than 100 representative articles published since 1990 can be found in this article, where their fundamental principles, advantages and disadvantages, and applications to fault diagnosis of machinery have been examined.

719 citations

Journal ArticleDOI
TL;DR: The physics of the premelting of ice and its relationship with the behavior of other materials more familiar to the condensed-matter community are described in this paper, where a number of the many tendrils of the basic phenomena as they play out on land, in the oceans, and throughout the atmosphere and biosphere are developed.
Abstract: The surface of ice exhibits the swath of phase-transition phenomena common to all materials and as such it acts as an ideal test bed of both theory and experiment. It is readily available, transparent, optically birefringent, and probing it in the laboratory does not require cryogenics or ultrahigh vacuum apparatus. Systematic study reveals the range of critical phenomena, equilibrium and nonequilibrium phase-transitions, and, most relevant to this review, premelting, that are traditionally studied in more simply bound solids. While this makes investigation of ice as a material appealing from the perspective of the physicist, its ubiquity and importance in the natural environment also make ice compelling to a broad range of disciplines in the Earth and planetary sciences. In this review we describe the physics of the premelting of ice and its relationship with the behavior of other materials more familiar to the condensed-matter community. A number of the many tendrils of the basic phenomena as they play out on land, in the oceans, and throughout the atmosphere and biosphere are developed.

627 citations

Journal ArticleDOI
TL;DR: The Southern Hemisphere climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system as discussed by the authors.
Abstract: The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.

559 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.
Abstract: The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.

489 citations