scispace - formally typeset
Search or ask a question
Author

Takashi Mukai

Bio: Takashi Mukai is an academic researcher from Nichia. The author has contributed to research in topics: Light-emitting diode & Quantum well. The author has an hindex of 65, co-authored 215 publications receiving 21889 citations.


Papers
More filters
Journal ArticleDOI
Abstract: Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure (DH) blue‐light‐emitting diodes(LEDs) with the luminous intensity over 1 cd were fabricated As an active layer, a Zn‐doped InGaN layer was used for the DH LEDs The typical output power was 1500 μW and the external quantum efficiency was as high as 27% at a forward current of 20 mA at room temperature The peak wavelength and the full width at half‐maximum of the electroluminescence were 450 and 70 nm, respectively This value of luminous intensity was the highest ever reported for blue LEDs

3,497 citations

Journal ArticleDOI
TL;DR: The results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.
Abstract: Since 1993, InGaN light-emitting diodes (LEDs) have been improved and commercialized, but these devices have not fulfilled their original promise as solid-state replacements for light bulbs as their light-emission efficiencies have been limited. Here we describe a method to enhance this efficiency through the energy transfer between quantum wells (QWs) and surface plasmons (SPs). SPs can increase the density of states and the spontaneous emission rate in the semiconductor, and lead to the enhancement of light emission by SP–QW coupling. Large enhancements of the internal quantum efficiencies (etaint) were measured when silver or aluminium layers were deposited 10 nm above an InGaN light-emitting layer, whereas no such enhancements were obtained from gold-coated samples. Our results indicate that the use of SPs would lead to a new class of very bright LEDs, and highly efficient solid-state light sources.

1,349 citations

Journal ArticleDOI
TL;DR: The luminous intensity of these green InGaN SQW LEDs (12 cd) was about 100 times higher than that of conventional green GaP LEDs (01 cd) as mentioned in this paper.
Abstract: Superbright green InGaN single quantum well (SQW) structure light-emitting diodes (LEDs) with a luminous intensity of 12 cd were fabricated The luminous intensity of these green InGaN SQW LEDs (12 cd) was about 100 times higher than that of conventional green GaP LEDs (01 cd) The output power, the external quantum efficiency, the peak wavelength and the full width at half-maximum of green SQW LEDs were 3 mW, 63%, 520 nm and 30 nm, respectively, at a forward current of 20 mA The p-AlGaN/InGaN/n-GaN structure of green InGaN SQW LEDs were grown by metalorganic chemical vapor deposition on sapphire subsutrates

1,048 citations

Journal ArticleDOI
TL;DR: In this paper, a hydrogenation process whereby acceptor-H neutral complexes are formed in p-type GaN films was proposed, which causes hole compensation, and deep-level and weak blue emissions in photoluminescence.
Abstract: Low-resistivity p-type GaN films, which were obtained by N2-ambient thermal annealing or low-energy electron-beam irradiation (LEEBI) treatment, showed a resistivity as high as 1×106 Ωcm after NH3-ambient thermal annealing at temperatures above 600°C. In the case of N2-ambient thermal annealing at temperatures between room temperature and 1000°C, the low-resistivity p-type GaN films showed no change in resistivity, which was almost constant between 2 Ωcm and 8 Ωcm. These results indicate that atomic hydrogen produced by NH3 dissociation at temperatures above 400°C is related to the hole compensation mechanism. A hydrogenation process whereby acceptor-H neutral complexes are formed in p-type GaN films was proposed. The formation of acceptor-H neutral complexes causes hole compensation, and deep-level and weak blue emissions in photoluminescence.

990 citations

Journal ArticleDOI
TL;DR: In this article, low resistivity p-type GaN films were obtained by N2-ambient thermal annealing at temperatures above 700°C for the first time, and the resistivity, hole carrier concentration and hole mobility became 2 Ωcm, 3×1017/cm3 and 10 cm2/Vs, respectively.
Abstract: Low-resistivity p-type GaN films were obtained by N2-ambient thermal annealing at temperatures above 700°C for the first time. Before thermal annealing, the resistivity of Mg-doped GaN films was approximately 1×106 Ωcm. After thermal annealing at temperatures above 700°C, the resistivity, hole carrier concentration and hole mobility became 2 Ωcm, 3×1017/cm3 and 10 cm2/Vs, respectively. In photoluminescence measurements, the intensity of 750-nm deep-level emissions (DL emissions) sharply decreased upon thermal annealing at temperatures above 700°C, as did the change in resistivity, and 450-nm blue emissions showed maximum intensity at approximately 700°C of thermal annealing.

960 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
Ekmel Ozbay1
13 Jan 2006-Science
TL;DR: The current status and future prospects of plAsmonics in various applications including plasmonic chips, light generation, and nanolithography are reviewed.
Abstract: Electronic circuits provide us with the ability to control the transport and storage of electrons. However, the performance of electronic circuits is now becoming rather limited when digital information needs to be sent from one point to another. Photonics offers an effective solution to this problem by implementing optical communication systems based on optical fibers and photonic circuits. Unfortunately, the micrometer-scale bulky components of photonics have limited the integration of these components into electronic chips, which are now measured in nanometers. Surface plasmon-based circuits, which merge electronics and photonics at the nanoscale, may offer a solution to this size-compatibility problem. Here we review the current status and future prospects of plasmonics in various applications including plasmonic chips, light generation, and nanolithography.

4,371 citations

Journal ArticleDOI
TL;DR: The basic concepts behind plasmonics-enabled light concentration and manipulation are discussed, an attempt to capture the wide range of activities and excitement in this area is made, and possible future directions are speculated on.
Abstract: The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

3,953 citations

Journal ArticleDOI
Abstract: Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure (DH) blue‐light‐emitting diodes(LEDs) with the luminous intensity over 1 cd were fabricated As an active layer, a Zn‐doped InGaN layer was used for the DH LEDs The typical output power was 1500 μW and the external quantum efficiency was as high as 27% at a forward current of 20 mA at room temperature The peak wavelength and the full width at half‐maximum of the electroluminescence were 450 and 70 nm, respectively This value of luminous intensity was the highest ever reported for blue LEDs

3,497 citations