scispace - formally typeset
Search or ask a question
Author

Takashi Nakamura

Bio: Takashi Nakamura is an academic researcher from Kyoto University. The author has contributed to research in topics: Gamma-ray burst & Gravitational wave. The author has an hindex of 60, co-authored 379 publications receiving 15010 citations. Previous affiliations of Takashi Nakamura include Yukawa Institute for Theoretical Physics & University of Electro-Communications.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the nonlinearity of Einstein gravity induces the higher multipole modes even if only a quadrupole mode exists initially.
Abstract: We perform numerical simulations of a three-dimensional (3D) time evolution of pure gravitational waves. We use a conformally flat and K=0 initial condition for the evolution of the spacetime. We adopt several slicing conditions to check whether a long time integration is possible in those conditions. For the case in which the amplitude of the gravitational waves is low, a long time integration is possible by using the harmonic slice and the maximal slice, while in the geodesic slice (\ensuremath{\alpha}=1) it is not possible. As in the axisymmetric case and also in the 3D case, gravitational waves with a sufficiently high amplitude collapse by their self-gravity and their final fates seem to be as black holes. In this case, the singularity avoidance property of the harmonic slice seems weak, so that it may be inappropriate for the formation problems of the black hole. By means of the gauge-invariant wave extraction technique we compute the waveform of the gravitational waves at an outer region. We find that the nonlinearity of Einstein gravity induces the higher multipole modes even if only a quadrupole mode exists initially.

949 citations

Journal ArticleDOI
TL;DR: It may be possible to construct a laser interferometer gravitational wave antenna in space with h(rms) approximately 10(-27) at f approximately 0.1 Hz and the formula for phase shift due to accelerating motion might be applied for binary sources of LISA.
Abstract: It may be possible to construct a laser interferometer gravitational wave antenna in space with h(rms) approximately 10(-27) at f approximately 0.1 Hz in this century. Using this antenna, (1) typically 10(5) chirp signals of coalescing binary neutron stars per year may be detected with S/N approximately 10(4); (2) we can directly measure the acceleration of the universe by a 10 yr observation of binary neutron stars; and (3) the stochastic gravitational waves of Omega(GW) > or similar to 10(-20) predicted by the inflation may be detected by correlation analysis. Our formula for phase shift due to accelerating motion might be applied for binary sources of LISA.

750 citations

Journal ArticleDOI
TL;DR: In this article, the spectral peak energy and the isotropic luminosity were used to estimate the luminosity and the redshift of 684 GRBs with unknown distances and derive the GRB formation rate as a function of the unknown distances.
Abstract: We investigate the GRB formation rate based on the relation between the spectral peak energy ($E_{p}$) and the isotropic luminosity. The $E_{p}$--luminosity relation covers the energy range of 50 -- 2000 keV and the luminosity range of $10^{50}$--$10^{54} erg/s, respectively. We find that the relation is considerably tighter than similar relations suggested previously. Using $E_{p}$--luminosity relation, we estimate the luminosity and the redshift of 684 GRBs with the unknown distances and derive the GRB formation rate as a function of the redshift. For $0 \le z \le 2$, the GRB formation rate is well correlated with the star formation rate while it increases monotonously from $z\sim 2$ out to $z \sim 12$. This behavior is consistent with the results of previous works using the lag--luminosity relation or the variability--luminosity relation.

629 citations

Journal ArticleDOI
Seiji Kawamura1, Hiroo Kunimori2, Mizuhiko Hosokawa2, Ryuichi Fujita3, Keiichi Maeda4, Hisa-aki Shinkai5, Takahiro Tanaka6, Yaka Wakabayashi6, Hideki Ishihara7, Kazutaka Nishiyama8, Ken-ichi Ueda9, Kaiki Taro Inoue10, Kazuhiro Yamamoto8, Kunihito Ioka, Feng-Lei Hong11, Yoshiki Tsunesada12, Kenji Numata13, Masaru Shibata6, Hitoshi Kuninaka8, Kazuhiro Hayama1, Chul-Moon Yoo6, Kazuhiro Agatsuma1, Mitsuru Musha9, Shinji Miyoki14, Yasufumi Kojima15, Yumiko Ejiri16, Takamori Akiteru14, Kentaro Somiya4, Dan Chen14, Tadayuki Takahashi8, Shiho Kobayashi17, Mitsuhiro Fukushima1, Takashi Nakamura6, Naoshi Sugiyama18, Yuta Michimura14, Yoshiyuki Obuchi1, Ayaka Shoda14, Kei Kotake1, Shihori Sakata, Takeshi Chiba19, Yoichi Aso14, Shigeo Nagano2, Tomohiro Harada20, Kiwamu Izumi14, Nobuyuki Kanda7, Isao Kawano8, Nobuki Kawashima10, Yasuo Torii1, Motohiro Enoki21, Yoshiaki Himemoto19, Hirotaka Takahashi22, Yudai Suwa6, Hisashi Hirabayashi, Hiroyuki Ito2, Keitaro Takahashi18, Kiyotomo Ichiki18, Kazuhiro Nakazawa14, Morio Toyoshima2, Takashi Hiramatsu6, Hiroyuki Nakano23, Hiroyuki Koizumi8, Ke-Xun Sun24, Toshikazu Ebisuzaki, Kent Yagi6, Takeshi Ikegami11, Koji Arai25, Kouji Nakamura1, Norio Okada1, Takeshi Takashima8, Takehiko Ishikawa8, K. Okada14, Wataru Kokuyama14, Kakeru Takahashi14, Masa-Katsu Fujimoto1, Ryuichi Takahashi26, Ryo Saito14, K. Tsubono14, Osamu Miyakawa14, Ken-ichi Oohara27, Hideyuki Horisawa28, Hideharu Ishizaki1, Shigenori Moriwaki14, Norichika Sago6, Masashi Ohkawa27, Fuminobu Takahashi14, Tatsuaki Hashimoto8, Takashi Sato27, Sachiko Kuroyanagi14, Umpei Miyamoto20, Kazuaki Kuroda14, Toshifumi Futamase29, Fumiko Kawazoe, Hideyuki Tagoshi30, Yoshinori Nakayama31, Masatake Ohashi14, Yoshiharu Eriguchi14, Toshitaka Yamazaki1, Tadashi Takano19, Hiroshi Yamakawa6, Kenta Kiuchi6, Ken-ichi Nakao7, Taiga Noumi14, Kazunori Kohri, Shinichi Nakasuka14, Wataru Hikida30, Hideo Matsuhara8, Isao Naito27, Tomotada Akutsu1, Shijun Yoshida29, Nobuyuki Matsumoto14, Masa-aki Sakagami6, Naoko Ohishi1, Ikkoh Funaki8, Hajime Sotani32, Taizoh Yoshino16, Atsushi Taruya14, Mutsuko Y. Morimoto8, E. Nishida16, Atsushi J. Nishizawa6, Hideki Asada26, Toshiyuki Morisawa6, Shinji Mukohyama14, Shuichi Sato33, Keisuke Taniguchi14, Yousuke Itoh34, Shinji Tsujikawa35, Rieko Suzuki16, Keiko Kokeyama36, Misao Sasaki6, Naoki Seto6, Koji Ishidoshiro14, Ryutaro Takahashi1, Shin-ichiro Sakai8, Hiroyuki Tashiro6, Motoyuki Saijo20, Naoko Kishimoto6, Masaki Ando6, Akitoshi Ueda1, Koh-suke Aoyanagi4, Yoshihide Kozai, Masayoshi Utashima8, Yoshito Niwa14, Jun'ichi Yokoyama14, Nobuyuki Tanaka1, Akito Araya14 

614 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe observations carried out by the MOA group of the Galactic bulge during 2000 that were designed to detect efficiently gravitational microlensing of faint stars in which the magnification is high and/or of short duration.
Abstract: We describe observations carried out by the MOA group of the Galactic bulge during 2000 that were designed to detect efficiently gravitational microlensing of faint stars in which the magnification is high and/or of short duration. These events are particularly useful for studies of extrasolar planets and faint stars. Approximately 17 deg2 were monitored at a sampling rate of up to six times per night. The images were analysed in real time using a difference imaging technique. 20 microlensing candidates were detected, of which eight were alerted to the microlensing community whilst in progress. Approximately half of the candidates had high magnifications (≳10), at least one had very high magnification (≳50), and one exhibited a clear parallax effect. The details of these events are reported here, together with details of the on-line difference imaging technique. Some nova-like events were also observed and these are described, together with one asteroid.

505 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
Abstract: We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.

5,954 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations