scispace - formally typeset
Search or ask a question
Author

Takashi Tanaka

Bio: Takashi Tanaka is an academic researcher from Kyushu University. The author has contributed to research in topics: Undulator & Magnetosphere. The author has an hindex of 35, co-authored 186 publications receiving 5789 citations. Previous affiliations of Takashi Tanaka include National Institute of Information and Communications Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

Journal ArticleDOI
TL;DR: In this paper, a 55m-long compact self-amplified spontaneous emission (SEM) source with a low acceleration energy of 250 MeV was used to generate X-ray free-electron laser radiation with a 2-GeV machine.
Abstract: Single-pass free-electron lasers based on self-amplified spontaneous emission1,2,3,4 are enabling the generation of laser light at ever shorter wavelengths, including extreme ultraviolet5, soft X-rays and even hard X-rays6,7,8. A typical X-ray free-electron laser is a few kilometres in length and requires an electron-beam energy higher than 10 GeV (refs 6, 8). If such light sources are to become accessible to more researchers, a significant reduction in scale is desirable Here, we report observations of brilliant extreme-ultraviolet radiation from a 55-m-long compact self-amplified spontaneous-emission source, which combines short-period undulators with a high-quality electron source operating at a low acceleration energy of 250 MeV. The radiation power reaches saturation at wavelengths ranging from 51 to 61 nm with a maximum pulse energy of 30 µJ. The ultralow emittance (0.6π mm mrad) of the electron beam from a CeB6 thermionic cathode9 is barely degraded by a multiple-stage bunch compression system that dramatically enhances the beam current from 1 to 300 A. This achievement expands the potential for generating X-ray free-electron laser radiation with a compact 2-GeV machine. Free-electron lasers can produce powerful pulses of radiation at very short wavelengths, even in the hard-X-ray region. In general, however, they comprise facilities several kilometres in length. A 55-m-long laser could open up the technology to a broader range of researchers.

369 citations

Journal ArticleDOI
TL;DR: An application program to calculate various characteristics of synchrotron radiation, called SPECTRA, is described, and effective numerical methods implemented to reduce computation time are explained.
Abstract: An application program to calculate various characteristics of synchrotron radiation, called SPECTRA, is described. The program does not need any other commercial software and is equipped with a full graphical user interface which makes data input quite easy. Equations on synchrotron radiation from arbitrary-field sources in a near-field region are derived, as are simplified expressions for ideal devices using a far-field approximation. Effective numerical methods implemented in SPECTRA to reduce computation time are explained, and several examples are presented.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus 10 keV X-ray free-electron laser radiation to an area of 0.95 µm × 1.20 µm with near-100%-efficiency using reflective optics.
Abstract: Researchers focus 10 keV X-ray free-electron laser radiation to an area of 0.95 µm × 1.20 µm with near-100%-efficiency using reflective optics. This approach increases the fluence by a factor of 40,000 and provides a power density of 6 × 1017 W cm−2.

220 citations

Journal ArticleDOI
TL;DR: A new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators is shown, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime.
Abstract: To study the dynamics of materials and biological samples at ultrafast time scales it is beneficial to use two short laser pulses, ideally at different energies. Here, the authors demonstrate the generation of two femtosecond hard X-ray laser pulses in a free electron laser, with more than 30% energy separation.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

01 Sep 1994
TL;DR: In this article, the authors present a review of Charged Particle Dynamics and Focusing Systems without Space Charge, including Linear Beam Optics with Space Charge and Self-Consistent Theory of Beams.
Abstract: Review of Charged Particle Dynamics. Beam Optics and Focusing Systems Without Space Charge. Linear Beam Optics with Space Charge. Self-Consistent Theory of Beams. Emittance Variation. Beam Physics Research from 1993 to 2007. Appendices. List of Frequently Used Symbols. Bibliography. Index.

1,311 citations

Journal ArticleDOI
TL;DR: The goal is to describe the current state of the art in this area, identify challenges, and suggest future directions and areas where signal processing methods can have a large impact on optical imaging and on the world of imaging at large.
Abstract: i»?The problem of phase retrieval, i.e., the recovery of a function given the magnitude of its Fourier transform, arises in various fields of science and engineering, including electron microscopy, crystallography, astronomy, and optical imaging. Exploring phase retrieval in optical settings, specifically when the light originates from a laser, is natural since optical detection devices [e.g., charge-coupled device (CCD) cameras, photosensitive films, and the human eye] cannot measure the phase of a light wave. This is because, generally, optical measurement devices that rely on converting photons to electrons (current) do not allow for direct recording of the phase: the electromagnetic field oscillates at rates of ~1015 Hz, which no electronic measurement device can follow. Indeed, optical measurement/detection systems measure the photon flux, which is proportional to the magnitude squared of the field, not the phase. Consequently, measuring the phase of optical waves (electromagnetic fields oscillating at 1015 Hz and higher) involves additional complexity, typically by requiring interference with another known field, in the process of holography.

869 citations