scispace - formally typeset
Search or ask a question
Author

Take-aki Mitsudo

Bio: Take-aki Mitsudo is an academic researcher from Kyoto University. The author has contributed to research in topics: Ruthenium & Catalysis. The author has an hindex of 30, co-authored 219 publications receiving 4524 citations. Previous affiliations of Take-aki Mitsudo include Nagoya Institute of Technology & Osaka University.


Papers
More filters
Journal ArticleDOI

1,157 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale and might combine the advantages of both homogeneous and heterogeneous catalysis.
Abstract: For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry.1-3 The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process.4 It is now well recognized that organometallic homogeneous catalysis offers one of the most promising approaches for solving this basic problem.2 Indeed, many of these homogeneous processes occur in high yields and selectivities and under mild reaction conditions. Most importantly, the steric and electronic properties of these catalysts can be tuned by varying the metal center and/or the ligands, thus rendering tailor-made molecular and macromolecular structures accessible.5,6 Despite the fact that various efficient methods, based on organometallic homogeneous catalysis, have been developed over the last 30 years on the laboratory scale, the industrial use of homogeneous catalytic processes is relatively limited.7 The separation of the products from the reaction mixture, the recovery of the catalysts, and the need for organic solvents are the major disadvantages in the homogeneous catalytic process. For these reasons, many homogeneous processes are not used on an industrial scale despite their benefits. Among the various approaches to address these problems, liquidliquid biphasic catalysis (“biphasic catalysis”) has emerged as one of the most important alternatives.6-11 The concept of this system implies that the molecular catalyst is soluble in only one phase whereas the substrates/products remain in the other phase. The reaction can take place in one (or both) of the phases or at the interface. In most cases, the catalyst phase can be reused and the products/substrates are simply removed from the reaction mixture by decantation. Moreover, in these biphasic systems it is possible to extract the primary products during the reaction and thus modulate the product selectivity.12 For a detailed discussion about this and other concepts of homogeneous catalyst immobilization, the reader is referred elsewhere.6,7 These biphasic systems might combine the advantages of both homogeneous (greater catalyst efficiency and mild reaction conditions) and heterogeneous (ease of catalyst recycling and separation of the products) catalysis. The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale.13-15 However, the use of water as a * Corresponding author. Fax: ++ 55 51 3316 73 04. E-mail: dupont@iq.ufrgs.br. 3667 Chem. Rev. 2002, 102, 3667−3692

3,483 citations

Journal ArticleDOI
TL;DR: This Review attempts to trace the historical origin of these powerful reactions, and outline the developments from the seminal discoveries leading to their eminent position as appreciated and applied today.
Abstract: In 2010, Richard Heck, Ei-ichi Negishi, and Akira Suzuki joined the prestigious circle of Nobel Laureate chemists for their roles in discovering and developing highly practical methodologies for C-C bond construction. From their original contributions in the early 1970s the landscape of the strategies and methods of organic synthesis irreversibly changed for the modern chemist, both in academia and in industry. In this Review, we attempt to trace the historical origin of these powerful reactions, and outline the developments from the seminal discoveries leading to their eminent position as appreciated and applied today.

2,148 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of CO2, its synthetic reactions and their possible role in future CO2 mitigation schemes that have to match the scale of man-made CO2 in the atmosphere, which rapidly approaches 1 teraton.
Abstract: The increase in atmospheric carbon dioxide is linked to climate changes; hence there is an urgent need to reduce the accumulation of CO2 in the atmosphere. The utilization of CO2 as a raw material in the synthesis of chemicals and liquid energy carriers offers a way to mitigate the increasing CO2 buildup. This review covers six important CO2 transformations namely: chemical transformations, photochemical reductions, chemical and electrochemical reductions, biological conversions, reforming and inorganic transformations. Furthermore, the vast research area of carbon capture and storage is reviewed briefly. This review is intended as an introduction to CO2, its synthetic reactions and their possible role in future CO2 mitigation schemes that has to match the scale of man-made CO2 in the atmosphere, which rapidly approaches 1 teraton.

1,771 citations

Journal ArticleDOI
TL;DR: Hydroamination of Alkenes and Alkynes under Microwave Irradiation and Nitromercuration Reactions 3878 9.8.4.5.
Abstract: 8.4.5. Nitromercuration Reactions 3878 9. Hydroamination of Alkenes and Alkynes under Microwave Irradiation 3878 * To whom correspondence should be addressed. Phone: +49 241 8

1,685 citations