scispace - formally typeset
Search or ask a question
Author

Takeaki Iwamoto

Bio: Takeaki Iwamoto is an academic researcher from Tohoku University. The author has contributed to research in topics: Silylene & Disilene. The author has an hindex of 37, co-authored 179 publications receiving 4411 citations. Previous affiliations of Takeaki Iwamoto include University of Tsukuba & National Presto Industries.


Papers
More filters
Journal ArticleDOI
13 Feb 2003-Nature
TL;DR: The synthesis of a thermally stable, crystalline trisilaallene derivative containing a formally sp-hybridized silicon atom is reported, and it is found that, in contrast to linear carbon allenes, the tristannaallene is significantly bent.
Abstract: Carbon chemistry exhibits a rich variety in bonding patterns, with homo- or heteronuclear multiple bonds involving sp-hybridized carbon atoms as found in molecules such as acetylenes, nitriles, allenes and carbon dioxide. Carbon's heavier homologues in group 14 of the periodic table—including silicon, germanium and tin—were long thought incapable of forming multiple bonds because of the less effective pπ–pπ orbital overlap involved in the multiple bonds. However, bulky substituents can protect unsaturated bonds and stabilize compounds with formally sp-hybridized heavy group-14 atoms1,2: stable germanium2, tin3 and lead4 analogues of acetylene derivatives and a marginally stable tristannaallene5 have now been reported. However, no stable silicon compounds with formal sp-silicon atoms have been isolated. Evidence for the existence of a persistent disilaacetylene6 and trapping7 of transient 2-silaallenes and other X = Si = X′ type compounds (X, X′ = O, CR2, NR, and so on) are also known, but stable silicon compounds with formally sp-hybridized silicon atoms have not yet been isolated. Here we report the synthesis of a thermally stable, crystalline trisilaallene derivative containing a formally sp-hybridized silicon atom. We find that, in contrast to linear carbon allenes, the trisilaallene is significantly bent. The central silicon in the molecule is dynamically disordered, which we ascribe to ready rotation of the central silicon atom around the molecular axis.

233 citations

Book ChapterDOI
TL;DR: In this article, the authors discuss present advances in novel synthetic methods for various types of stable disilenes, such as cyclic and bicyclic disilene and conjugated tetrasiladienes.
Abstract: Publisher Summary Remarkable progress of the chemistry of disilenes seems to encourage building up the modern general theory of bonding, structure, and reactions applied for the heavier main-group element chemistry in the near future; the general theory should include the theory for organic chemistry as a special case. This chapter discusses present advances in novel synthetic methods for various types of stable disilenes. Stable disilenes and other unsaturated compounds of heavier group-14 elements show unique spectroscopic properties that cannot be easily obtained from organic compounds. Bonding and structures of disilenes have also been discussed in the chapter. For a detailed discussion on the structure of disilenes, it is helpful to understand the intrinsic difference in the bonding between disilene and ethylene. The chapter highlights reactions and mechanisms of disilenes. During the past decade, many new types of reactions have been found for novel types of disilenes such as cyclic and bicyclic disilenes and conjugated tetrasiladienes. Mechanistic studies have recently been performed on several fundamental reactions of disilenes both theoretically and experimentally, and have greatly deepened the understanding of their reaction pathways, their potential energy surfaces, the factors determining the rates and stereochemistry, and so on.

194 citations

Journal ArticleDOI
TL;DR: X-ray analysis of the first trigermaallene (3) and 1,3-digermasila allene (4) revealed that the trimetallaallene skeletons are not linear but significantly bent, similarly to the corresponding trisilaallene 2.

123 citations

Journal ArticleDOI
TL;DR: In the solid state, the unsaturated silicon atom in 4-6 adopts planar geometry and the extent of the shortening of Si=X double bonds from the corresponding Si-X single bonds decreases in the order 4 > 5 > 6.
Abstract: The first dialkyl-substituted silicon−chalcogen doubly bonded compounds [R2SiX; R2 = 1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl, X = S (4), Se (5), and Te (6) ] were synthesized by the reactio...

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The key unifying feature of almost all molecules discussed in this review is that they are generally stabilized by the use of bulky substituents which block associative or various decomposition pathways.
Abstract: This review is essentially an update of one entitled “πBonding and The Lone Pair Effect in Multiple Bonds Between Heavier Main Group Elements” which was published more than 10 years ago in this journal.1 The coverage of that survey was focused on the synthesis, structure, and bonding of stable compounds2 of heavier main group elements that correspond to the skeletal drawings reproduced in Tables 1 and 2. A row of numbers is listed at the bottom of each column in these tables. This refers to the number of stable complexes from each class that are currently known. The numbers in parentheses refer to the number of stable species that were known at the time of the previous review. Clearly, many of the compound classes listed have undergone considerable expansion although some remain stubbornly rare. The most significant developments for each class will be discussed in detail under the respective sections. As will be seen, there are also a limited number of multiple bonded heavier main group species that do not fit neatly in the classifications in Tables 1 and 2. However, to keep the review to a manageable length, the limits and exclusions, which parallel those used earlier, are summarized as follows: (i) discussion is mainly confined to compounds where experimental data on stable, isolated species have been obtained, (ii) stable compounds having multiple bonding between heavier main group elements and transition metals are not generally discussed, (iii) compounds in which a multiple bonded heavier main group element is incorporated within a ring are generally not covered, and (iv) hypervalent main group compounds that may incorporate faux multiple bonding are generally excluded. Such compounds are distinguished from those in Tables 1 and 2 in that they apparently require the use of more than four valence bonding orbitals at one or more of the bonded atoms. The remainder of this review is organized in a similar manner to that of the previous one wherein the compounds to be discussed are classified according to those summarized in Tables 1 and 2. The key unifying feature of almost all molecules discussed in this review is that they are generally stabilized by the use of bulky substituents which block associative or various decomposition pathways.3 Since the previous review was published in 1999, several review articles that cover parts of the subject matter have appeared.4

865 citations

Journal ArticleDOI
TL;DR: The early silylene research was concerned largely with comparing the chemistry of the dihalosilylenes with that of carbenes, so it might be difficult to isolate metallylenes as stable compounds under ambient conditions.
Abstract: In recent decades, it has generally been recognized that carbenes play an important role as transient intermediates. As a result of a number of stable carbenes having been isolated and investigated in detail, it is not an exaggeration to say that the chemistry of carbenes has been thoroughly investigated and is now well-understood.1 In addition, much attention has also been paid to the heavier analogues of carbenes, i.e., silylenes (R2Si:), germylenes (R2Ge:), stannylenes (R2Sn:), and plumbylenes (R2Pb:). These so-called metallylenes are monomeric species of the polymetallanes. This is especially true of the silylenes, which are believed to be monomers of polysilane. The metallylenes could be expected to be of great importance in fundamental and applied chemistry as a result of their many differences and similarities to carbenes. The valency of the central atom of the heavier carbene analogues (R2M:, M ) Si, Ge, Sn, Pb) is two. That is, its oxidation state is MII and its stability increases as the principal quantum number (n) increases. In fact, dichloroplumbylene and dichlorostannylene, PbCl2 and SnCl2, respectively, are very stable ionic compounds. However, these dihalides exist as polymers or ion pairs both in solution and in the solid state. The dichlorogermylene complex GeCl2 · (dioxane)3 is also known to be stable and isolable, whereas the dihalosilylenes are barely isolable compounds.2 The early silylene research was concerned largely with comparing the chemistry of the dihalosilylenes with that of carbenes. Hence, the chemistry of the metallylenes has been considered mainly from the molecular chemistry point of view.4 In contrast to the carbon atom, the heavier group 14 atoms have a low ability to form hybrid orbitals. They therefore prefer the (ns)2(np)2 valence electron configurations in their divalent species.5 Since two electrons remain as a singlet pair in the ns orbital, the ground state of H2M: (M ) Si, Ge, Sn, Pb) is a singlet, unlike the case of H2C:, where the ground state is a triplet (Figure 1).1a On the basis of theoretical calculations, the singlet-triplet energy differences ∆EST for H2M, [∆EST ) E(triplet) E(singlet)], are found to be 16.7 (M ) Si), 21.8 (M ) Ge), 24.8 (M ) Sn), and 34.8 (M ) Pb) kcal/mol, respectively. That of H2C: is estimated as -14.0 kcal/mol.6 Furthermore, the relative stabilities of the singlet species of R2M: (M ) C, Si, Ge, Sn, Pb; R ) alkyl or aryl) compared to the corresponding dimer, R2MdMR2, are estimated to increase as the element row descends, C < Si < Ge < Sn < Pb. It follows, therefore, that one can expect that a divalent organolead compound such as plumbylene should be isolable as a stable compound. However, some plumbylenes, without any electronic or steric stabilization effects, are known to be thermally unstable and undergo facile disproportionation reactions, giving rise to elemental lead and the corresponding tetravalent organolead compounds.7 On this basis, it could be concluded that it might be difficult to isolate metallylenes as stable compounds under ambient conditions, since they generally exhibit extremely high reactivity toward other molecules as well as themselves. Metallylenes have a singlet ground state with a vacant p-orbital and a lone pair of valence orbitals. This extremely high reactivity must be due to their vacant p-orbitals, since 6 valence electrons is less than the 8 electrons of the “octet rule”. Their lone pair is expected to be inert due to its high s-character. In order to stabilize metallylenes enough to be isolated, either some thermodynamic and/or kinetic stabilization of the reactive vacant p-orbital is required (Figure 2). A range of “isolable” metallylenes have been synthesized through the thermodynamic stabilization of coordinating Cp* ligands, the inclusion of heteroatoms such as N, O, and P, * To whom correspondence should be addressed. Phone: +81-774-38-3200. Fax: +81-774-38-3209. E-mail: tokitoh@boc.kuicr.kyoto-u.ac.jp. Chem. Rev. 2009, 109, 3479–3511 3479

727 citations