scispace - formally typeset
Search or ask a question
Author

Takehiko Shimanouchi

Bio: Takehiko Shimanouchi is an academic researcher from University of Tokyo. The author has contributed to research in topics: Infrared spectroscopy & Raman spectroscopy. The author has an hindex of 54, co-authored 200 publications receiving 20789 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Protein Data Bank is a computer-based archival file for macromolecular structures that stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies.

7,983 citations

Journal ArticleDOI
TL;DR: The Protein Data Bank is a computer-based archival file for macromolecular structures that stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies.

2,453 citations

Book
01 Jan 1972
TL;DR: In this article, the fundamental vibrational frequencies of 109 molecular forms of 38 polyatomic chain molecules consisting of the CH3, CD3, CH2 CD2, CHD, O, and S groups are given as an extension of tables of molecular vibrational frequency published in the NSRDS•NBS publication series and in this journal.
Abstract: Fundamental vibrational frequencies of 109 molecular forms of 38 polyatomic chain molecules consisting of the CH3, CD3, CH2 CD2, CHD, O, and S groups are given as an extension of tables of molecular vibrational frequencies published in the NSRDS‐NBS publication series and in this journal. On preparing the tables in this part, an approach, different from that in the previous parts, based on the calculations of normal vibration frequencies was adopted. A set of force constants which explains all the frequencies of small molecules for which the assignments had been established was obtained and then the frequencies of larger molecules was calculated and compared with the frequencies observed in the infrared and Raman spectra. The tables provide a convenient source of information for those who require vibrational energy levels and related properties in molecular spectroscopy, thermodynamics, analytical chemistry, and other fields of physics and chemistry.

706 citations

Journal ArticleDOI
TL;DR: The Protein Data Bank is a computer-based archival file for macromolecular structures that stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies.
Abstract: The Protein Data Bank is a computer-based archival file for macromolecular structures. The Bank stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies. Text included in each data entry gives pertinent information for the structure at hand (e.g. species from which the molecule has been obtained, resolution of diffraction data, literature citations and specifications of secondary structure). In addition to atomic co-ordinates and connectivities, the Protein Data Bank stores structure factors and phases, although these latter data are not placed in any uniform format. Input of data to the Bank and general maintenance functions are carried out at Brookhaven National Laboratory. All data stored in the Bank are available on magnetic tape for public distribution, from Brookhaven (to laboratories in the Americas), Tokyo (Japan), and Cambridge (Europe and worldwide). A master file is maintained at Brookhaven and duplicate copies are stored in Cambridge and Tokyo. In the future, it is hoped to expand the scope of the Protein Data Bank to make available co-ordinates for standard structural types (e.g. alpha-helix, RNA double-stranded helix) and representative computer programs of utility in the study and interpretation of macromolecular structures.

581 citations

Journal ArticleDOI
TL;DR: Raman spectral studies on numerous model molecules related to tyrosine, including certain deuterium derivatives, show that the doublet is due to Fermi resonance between the ring-breathing vibration and the overtone of an out-of-plane ring-bending vibration of the para-substituted benzenes.
Abstract: The doublet at 850 and 830 cm-1 in the Raman spectra of proteins containing tyrosyl residues has been examined as to its origin and the relation of its components to the environment of the phenyl ring, the state of the phenolic hydroxyl group, and the conformation of the amino acid backbone. Raman spectral studies on numerous model molecules related to tyrosine, including certain deuterium derivatives, show that the doublet is due to Fermi resonance between the ring-breathing vibration and the overtone of an out-of-plane ring-bending vibration of the para-substituted benzenes. Further examination of the effects of pH and solvents on the Fermi doublet and of the crystallographic data demonstrates that the intensity ratio of the two components depends on changes in the relative frequencies of the two vibrations. These in turn are found to be sensitive to the nature of the hydrogen bonding of the phenolic hydroxyl group of its ionization, but much less so to the environment of the phenyl ring and the conformation of the amino acid backbone. By use of the relative intensities of the doublet in model systems where the phenolic hydroxyl group is strongly hydrogen-bonded, weakly hydrogen-bonded, free or ionized, the reported Raman intensities of the doublets observed in the Raman spectra of several proteins have been interpreted. The results are compared with those obtained by other techniques.

548 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.

46,130 citations

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: Coot is a molecular-graphics program designed to assist in the building of protein and other macromolecular models and the current state of development and available features are presented.
Abstract: Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations such as idealization, real-space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers and Ramachandran idealization. Furthermore, tools are provided for model validation as well as interfaces to external programs for refinement, validation and graphics. The software is designed to be easy to learn for novice users, which is achieved by ensuring that tools for common tasks are `discoverable' through familiar user-interface elements (menus and toolbars) or by intuitive behaviour (mouse controls). Recent developments have focused on providing tools for expert users, with customisable key bindings, extensions and an extensive scripting interface. The software is under rapid development, but has already achieved very widespread use within the crystallographic community. The current state of the software is presented, with a description of the facilities available and of some of the underlying methods employed.

22,053 citations

Journal ArticleDOI
TL;DR: A set of simple and physically motivated criteria for secondary structure, programmed as a pattern‐recognition process of hydrogen‐bonded and geometrical features extracted from x‐ray coordinates is developed.
Abstract: For a successful analysis of the relation between amino acid sequence and protein structure, an unambiguous and physically meaningful definition of secondary structure is essential. We have developed a set of simple and physically motivated criteria for secondary structure, programmed as a pattern-recognition process of hydrogen-bonded and geometrical features extracted from x-ray coordinates. Cooperative secondary structure is recognized as repeats of the elementary hydrogen-bonding patterns “turn” and “bridge.” Repeating turns are “helices,” repeating bridges are “ladders,” connected ladders are “sheets.” Geometric structure is defined in terms of the concepts torsion and curvature of differential geometry. Local chain “chirality” is the torsional handedness of four consecutive Cα positions and is positive for right-handed helices and negative for ideal twisted β-sheets. Curved pieces are defined as “bends.” Solvent “exposure” is given as the number of water molecules in possible contact with a residue. The end result is a compilation of the primary structure, including SS bonds, secondary structure, and solvent exposure of 62 different globular proteins. The presentation is in linear form: strip graphs for an overall view and strip tables for the details of each of 10.925 residues. The dictionary is also available in computer-readable form for protein structure prediction work.

14,077 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations