scispace - formally typeset
Search or ask a question
Author

Takenobu Katagiri

Bio: Takenobu Katagiri is an academic researcher from Showa University. The author has contributed to research in topics: Bone morphogenetic protein 2 & Osteoblast. The author has an hindex of 17, co-authored 23 publications receiving 5374 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.
Abstract: The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP-2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)-positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.

1,410 citations

Journal ArticleDOI
TL;DR: Results clearly indicate that rhBMP- 2 is involved, at least in vitro, not only in inducing differentiation of osteoblast precursor cells into more mature osteOBlast-like cells, but also in inhibiting myogenic differentiation.
Abstract: The in vitro effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on osteogenic and myogenic differentiation was examined in two clonal cell lines of rat osteoblast-like cells at different differentiation stages, ROB-C26 (C26) and ROB-C20 (C20). The C26 is a potential osteoblast precursor cell line that is also capable of differentiating into muscle cells and adipocytes; the C20 is a more differentiated osteoblastic cell line. Proliferation was stimulated by rhBMP-2 in C26 cells, but inhibited in C20 cells. rhBMP-2 greatly increased alkaline phosphate (ALP) activity in C26 cells, but not in C20 cells. The steady-state level of ALP mRNA was also increased by rhBMP-2 in C26 cells, but not in C20 cells. Production of 3',5'-cAMP in response to parathyroid hormone (PTH) was dose-dependently enhanced by adding rhBMP-2 in both C26 and C20 cells, though the stimulatory effect was much greater in the former. There was neither basal expression of osteocalcin mRNA nor its protein synthesis in C26 cells, but they were strikingly induced by rhBMP-2 in the presence of 1 alpha,25-dihydroxyvitamin D3. rhBMP-2 induced no appreciable changes in procollagen mRNA levels of type I and type III in the two cell lines. Differentiation of C26 cells into myotubes was greatly inhibited by adding rhBMP-2. The inhibitory effect of rhBMP-2 on myogenic differentiation was also observed in clonal rat skeletal myoblasts (L6). Like BMP-2, TGF-beta 1 inhibited myogenic differentiation. However, unlike BMP-2, TGF-beta 1 decreased ALP activity in both C26 and C20 cells. TGF-beta 1 induced neither PTH responsiveness nor osteocalcin production in C26 cells, but it increased PTH responsiveness in C20 cells. These results clearly indicate that rhBMP-2 is involved, at least in vitro, not only in inducing differentiation of osteoblast precursor cells into more mature osteoblast-like cells, but also in inhibiting myogenic differentiation.

745 citations

Journal ArticleDOI
TL;DR: The discovery of Smad-mediated signals revealed the precise functions of BMPs in osteoblast differentiation and confirmed the well-known hypothesis that osteoblasts play an essential role in osteoclast differentiation.
Abstract: Bone is continuously destroyed and reformed to maintain constant bone volume and calcium homeostasis in vertebrates throughout their lives. Osteoblasts and osteoclasts are specialized cells responsible for bone formation and resorption, respectively. Recent developments in bone cell biology have greatly changed our conceptions of the regulatory mechanisms of the differentiation of osteoblasts and osteoclasts. Bone morphogenetic proteins (BMPs) play critical roles in osteoblast differentiation. The discovery of Smad-mediated signals revealed the precise functions of BMPs in osteoblast differentiation. Transcription factors, Runx2 and Osterix, are found to be essential molecules for inducing osteoblast differentiation, as indicated by the fact that both Runx2-null mice and Osterix-null mice have neither bone tissue nor osteoblasts. Smad transcriptional factors are shown to interact with other transcription regulators, including Runx2. Also, the recent discovery of receptor activator of NF-κB ligand (RANKL)–RANK interaction confirms the well-known hypothesis that osteoblasts play an essential role in osteoclast differentiation. Osteoblasts express RANKL as a membrane-associated factor. Osteoclast precursors that express RANK, a receptor for RANKL, recognize RANKL through the cell–cell interaction and differentiate into osteoclasts. Recent studies have shown that lipopolysaccharide and inflammatory cytokines such as tumor necrosis factor receptor-α and interleukin 1 directly regulate osteoclast differentiation and function through a mechanism independent of the RANKL–RANK interaction. Transforming growth factor-β super family members and interferon-γ are also shown to be important regulators in osteoclastogenesis. These findings have opened new areas for exploring the molecular mechanisms of osteoblast and osteoclast differentiation.

590 citations

Journal ArticleDOI
TL;DR: The results clearly indicate that the ability of IL- 6 to induce osteoclast differentiation depends on signal transduction mediated by IL-6R expressed on osteoblastic cells but not on osteOClast progenitors.
Abstract: We reported that interleukin (IL) 6 alone cannot induce osteoclast formation in cocultures of mouse bone marrow and osteoblastic cells, but soluble IL-6 receptor (IL-6R) strikingly triggered osteoclast formation induced by IL-6. In this study, we examined the mechanism of osteoclast formation by IL-6 and related cytokines through the interaction between osteoblastic cells and osteoclast progenitors. When dexamethasone was added to the cocultures, IL-6 could stimulate osteoclast formation without the help of soluble IL-6R. Osteoblastic cells expressed a very low level of IL-6R mRNA, whereas fresh mouse spleen and bone marrow cells, both of which are considered to be osteoclast progenitors, constitutively expressed relatively high levels of IL-6R mRNA. Treatment of osteoblastic cells with dexamethasone induced a marked increase in the expression of IL-6R mRNA. By immunoblotting with antiphosphotyrosine antibody, IL-6 did not tyrosine-phosphorylate a protein with a molecular mass of 130 kD in osteoblastic cells but did so in dexamethasone-pretreated osteoblastic cells. Osteoblastic cells from transgenic mice constitutively expressing human IL-6R could support osteoclast development in the presence of human IL-6 alone in cocultures with normal spleen cells. In contrast, osteoclast progenitors in spleen cells from transgenic mice overexpressing human IL-6R were not able to differentiate into osteoclasts in response to IL-6 in cocultures with normal osteoblastic cells. These results clearly indicate that the ability of IL-6 to induce osteoclast differentiation depends on signal transduction mediated by IL-6R expressed on osteoblastic cells but not on osteoclast progenitors.

362 citations


Cited by
More filters
Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.

12,204 citations

Journal ArticleDOI
11 Jan 2002-Cell
TL;DR: It is proposed that Runx2/Cbfa1-expressing preosteoblasts are still bipotential cells, because Osx null preostEoblasts express typical chondrocyte marker genes, and Osx acts downstream of Runx 2/C bfa1.

3,283 citations

Journal ArticleDOI
TL;DR: Recent evidence supports the possible contribution of adult stem cells in the muscle regeneration process and in particular, bone marrow-derived and muscle-derived stem cells contribute to new myofiber formation and to the satellite cell pool after injury.
Abstract: Charge, Sophie B. P., and Michael A. Rudnicki. Cellular and Molecular Regulation of Muscle Regeneration. Physiol Rev 84: 209–238, 2004; 10.1152/physrev.00019.2003.—Under normal circumstances, mamma...

2,497 citations

Journal ArticleDOI
TL;DR: The role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis are reviewed to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis.
Abstract: The adult skeleton regenerates by temporary cellular structures that comprise teams of juxtaposed osteoclasts and osteoblasts and replace periodically old bone with new. A considerable body of evidence accumulated during the last decade has shown that the rate of genesis of these two highly specialized cell types, as well as the prevalence of their apoptosis, is essential for the maintenance of bone homeostasis; and that common metabolic bone disorders such as osteoporosis result largely from a derangement in the birth or death of these cells. The purpose of this article is 3-fold: 1) to review the role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis; 2) to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis; and 3) to highlight the implications of bone cell birth and death for a better understanding of the mechanism of action and efficacy of present and future pharmacotherapeutic agents for osteoporosis.

2,398 citations

Journal ArticleDOI
TL;DR: Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts, and new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions will be established.
Abstract: Osteoblasts/stromal cells are essentially involved in osteoclast differentiation and function through cell-to-cell contact (Fig. 8). Although many attempts have been made to elucidate the mechanism of the so-called "microenvironment provided by osteoblasts/stromal cells," (5-8) it has remained an open question until OPG and its binding molecule were cloned. The serial discovery of the new members of the TNF receptor-ligand family members has confirmed the idea that osteoclast differentiation and function are regulated by osteoblasts/stromal cells. RANKL, which has also been called ODF, TRANCE, or OPGL, is a member of the TNF ligand family. Expression of RANKL mRNA in osteoblasts/stromal cells is up-regulated by osteotropic factors such as 1 alpha, 25(OH)2D3, PTH, and IL-11. Osteoclast precursors express RANK, a TNF receptor family member, recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into pOCs in the presence of M-CSF. RANKL is also involved in the survival and fusion of pOCs and activation of mature osteoclasts. OPG, which has also been called OCIF or TR1, is a soluble receptor for RANKL and acts as a decoy receptor in the RANK-RANKL signaling system (Fig. 8). In conclusion, osteoblasts/stromal cells are involved in all of the processes of osteoclast development, such as differentiation, survival, fusion, and activation of osteoclasts (Fig. 8). Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts. RANKL, RANK, and OPG are three key molecules that regulate osteoclast recruitment and function. Further studies on these key molecules will elucidate the molecular mechanism of the regulation of osteoclastic bone resorption. This line of studies will establish new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions such as osteopetrosis, osteoporosis, metastatic bone disease, Paget's disease, rheumatoid arthritis, and periodontal bone disease.

2,273 citations