scispace - formally typeset
Search or ask a question
Author

Takeo Kamino

Bio: Takeo Kamino is an academic researcher. The author has contributed to research in topics: Focused ion beam & Electron backscatter diffraction. The author has an hindex of 1, co-authored 1 publications receiving 695 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an overview of the variety of techniques that have been developed to prepare the final transmission electron microscope (TEM) specimen is presented, as well as the problems such as FIB-induced damage and Ga contamination.
Abstract: One of the most important applications of a focused ion beam (FIB) workstation is preparing samples for transmission electron microscope (TEM) investigation. Samples must be uniformly thin to enable the analyzing beam of electrons to penetrate. The FIB enables not only the preparation of large, uniformly thick, sitespecific samples, but also the fabrication of lamellae used for TEM samples from composite samples consisting of inorganic and organic materials with very different properties. This article gives an overview of the variety of techniques that have been developed to prepare the final TEM specimen. The strengths of these methods as well as the problems, such as FIB-induced damage and Ga contamination, are illustrated with examples. Most recently, FIB-thinned lamellae were used to improve the spatial resolution of electron backscatter diffraction and energy-dispersive x-ray mapping. Examples are presented to illustrate the capabilities, difficulties, and future potential of FIB.

791 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the state of the art and level of understanding of direct ion and electron beam fabrication and point out some of the unsolved problems can be found in this article, where the authors also discuss structures that are made for research purposes or for demonstration of the processing capabilities.
Abstract: Beams of electrons and ions are now fairly routinely focused to dimensions in the nanometer range. Since the beams can be used to locally alter material at the point where they are incident on a surface, they represent direct nanofabrication tools. The authors will focus here on direct fabrication rather than lithography, which is indirect in that it uses the intermediary of resist. In the case of both ions and electrons, material addition or removal can be achieved using precursor gases. In addition ions can also alter material by sputtering (milling), by damage, or by implantation. Many material removal and deposition processes employing precursor gases have been developed for numerous practical applications, such as mask repair, circuit restructuring and repair, and sample sectioning. The authors will also discuss structures that are made for research purposes or for demonstration of the processing capabilities. In many cases the minimum dimensions at which these processes can be realized are considerably larger than the beam diameters. The atomic level mechanisms responsible for the precursor gas activation have not been studied in detail in many cases. The authors will review the state of the art and level of understanding of direct ion and electron beam fabrication and point out some of the unsolved problems.

941 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the principal deformation mechanisms of ultra-strength materials is presented, and the fundamental defect processes that initiate and sustain plastic flow and fracture are described, as well as the mechanics and physics of both displacive and diffusive mechanisms.

701 citations

Journal ArticleDOI
TL;DR: It is found the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process.
Abstract: LiNi1/3Mn1/3Co1/3O2-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi1/3Mn1/3Co1/3O2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials.

597 citations

Journal ArticleDOI
TL;DR: This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques, for a variety of current and emerging applications.
Abstract: Metallic nanostructures now play an important role in many applications. In particular, for the emerging fields of plasmonics and nanophotonics, the ability to engineer metals on nanometric scales allows the development of new devices and the study of exciting physics. This review focuses on top-down nanofabrication techniques for engineering metallic nanostructures, along with computational and experimental characterization techniques. A variety of current and emerging applications are also covered.

496 citations

Journal ArticleDOI
TL;DR: In this article, a multiscale characterization was achieved using a combination of compositional organic geochemistry and spectromicroscopy techniques, including synchrotron-based scanning transmission X-ray microscopy and transmission electron microscopy (TEM).

377 citations