scispace - formally typeset
Search or ask a question
Author

Takeo Kanade

Bio: Takeo Kanade is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Motion estimation & Image processing. The author has an hindex of 147, co-authored 799 publications receiving 103237 citations. Previous affiliations of Takeo Kanade include National Institute of Advanced Industrial Science and Technology & Hitachi.


Papers
More filters
Proceedings ArticleDOI
08 Dec 2008
TL;DR: It is shown that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to compactly describe most real motions.
Abstract: Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this approach is that we do not need to estimate any basis vectors during computation. We show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to compactly describe most real motions. This results in a significant reduction in unknowns, and corresponding stability in estimation. We report empirical performance, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).

274 citations

Proceedings ArticleDOI
Takeo Kanade1, H. Kano1, S. Kimura1, Atsushi Yoshida1, Kazuo Oda1 
05 Aug 1995
TL;DR: A video-rate stereo machine has been developed at CMU with the capability of generating a dense range map, aligned with an intensity image, at the video rate, with high throughput and high precision.
Abstract: A video-rate stereo machine has been developed at CMU with the capability of generating a dense range map, aligned with an intensity image, at the video rate. The target performance of the CMU video-rate stereo machine is: 1) multi-image input of 6 cameras; 2) high throughput of 30 million point/spl times/disparity measurement per second; 3) high frame rate of 30 frame/sec; 4) a dense depth map of 256/spl times/240 pixels; 5) disparity search range of up to 60 pixels; 6) high precision of up to 7 bits (with interpolation); and 7) uncertainty estimation available for each pixel.

266 citations

Journal ArticleDOI
01 Aug 1990
TL;DR: A method is presented for determining the shapes of hybrid surfaces without prior knowledge of the relative strengths of the Lambertian and specular components of reflection, to adapt to variations in reflectance properties from one scene point to another.
Abstract: A method is presented for determining the shapes of hybrid surfaces without prior knowledge of the relative strengths of the Lambertian and specular components of reflection. The object surface is illuminated using extended light sources and is viewed from a single direction. Surface illumination using extended sources makes it possible to ensure the detection of both Lambertian and specular reflections. Uniformly distributed source directions are used to obtain an image sequence of the object. This method of obtaining photometric measurements is called photometric sampling. An extraction algorithm uses the set of image intensity values measured at each surface point to compute orientation as well as relative strengths of the Lambertian and specular reflection components. The simultaneous recovery of shape and reflectance parameters enables the method to adapt to variations in reflectance properties from one scene point to another. Experiments were conducted on Lambertian surfaces, specular surfaces, and hybrid surfaces. >

265 citations

Journal ArticleDOI
TL;DR: A dual approach to describe the evolving 3D structure in trajectory space by a linear combination of basis trajectories is proposed and the Discrete Cosine Transform (DCT) is used as the object independent basis and it is demonstrated that it approaches Principal Component Analysis (PCA) for natural motions.
Abstract: Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes. These bases are object dependent and therefore have to be estimated anew for each video sequence. In contrast, we propose a dual approach to describe the evolving 3D structure in trajectory space by a linear combination of basis trajectories. We describe the dual relationship between the two approaches, showing that they both have equal power for representing 3D structure. We further show that the temporal smoothness in 3D trajectories alone can be used for recovering nonrigid structure from a moving camera. The principal advantage of expressing deforming 3D structure in trajectory space is that we can define an object independent basis. This results in a significant reduction in unknowns and corresponding stability in estimation. We propose the use of the Discrete Cosine Transform (DCT) as the object independent basis and empirically demonstrate that it approaches Principal Component Analysis (PCA) for natural motions. We report the performance of the proposed method, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions, including piecewise rigid motion, partially nonrigid motion (such as a facial expressions), and highly nonrigid motion (such as a person walking or dancing).

262 citations

Book ChapterDOI
11 May 2004
TL;DR: This paper proves that, under the weak-perspective projection model, enforcing both the basis and the rotation constraints leads to a closed-form solution to the problem of non-rigid shape and motion recovery, and proposes a set of novel constraints, basis constraints, which uniquely determine the shape bases.
Abstract: Recovery of three dimensional (3D) shape and motion of non-static scenes from a monocular video sequence is important for applications like robot navigation and human computer interaction. If every point in the scene randomly moves, it is impossible to recover the non-rigid shapes. In practice, many non-rigid objects, e.g. the human face under various expressions, deform with certain structures. Their shapes can be regarded as a weighted combination of certain shape bases. Shape and motion recovery under such situations has attracted much interest. Previous work on this problem [6,4,13] utilized only orthonormality constraints on the camera rotations (rotation constraints). This paper proves that using only the rotation constraints results in ambiguous and invalid solutions. The ambiguity arises from the fact that the shape bases are not unique because their linear transformation is a new set of eligible bases. To eliminate the ambiguity, we propose a set of novel constraints, basis constraints, which uniquely determine the shape bases. We prove that, under the weak-perspective projection model, enforcing both the basis and the rotation constraints leads to a closed-form solution to the problem of non-rigid shape and motion recovery. The accuracy and robustness of our closed-form solution is evaluated quantitatively on synthetic data and qualitatively on real video sequences.

260 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations