scispace - formally typeset
Search or ask a question
Author

Takeo Kanade

Bio: Takeo Kanade is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Motion estimation & Image processing. The author has an hindex of 147, co-authored 799 publications receiving 103237 citations. Previous affiliations of Takeo Kanade include National Institute of Advanced Industrial Science and Technology & Hitachi.


Papers
More filters
Proceedings ArticleDOI
04 Jan 1998
TL;DR: This formulation leads to a weighted least squares motion and shape recovery problem which is solved by an efficient quasi-linear algorithm and the statistical uncertainty model enables us to recover uncertainty estimates for the reconstructed three dimensional feature locations.
Abstract: In this paper we present a unified factorization algorithm for recovering structure and motion from image sequences by using point features, line segments and planes. This new formulation is based on directional uncertainty model for features. Points and line segments are both described by the same probabilistic models and so can be recovered in the same way. Prior information on the coplanarity of features is shown to fit naturally into the new factorization formulation and provides additional constraints for the shape recovery. This formulation leads to a weighted least squares motion and shape recovery problem which is solved by an efficient quasi-linear algorithm. The statistical uncertainty model also enables us to recover uncertainty estimates for the reconstructed three dimensional feature locations.

135 citations

Journal ArticleDOI
TL;DR: A linear algorithm for recovering 3D affine shape and motion from line correspondences with uncalibrated affine cameras with the introduction of a one-dimensional projective camera is presented.
Abstract: This paper presents a linear algorithm for recovering 3D affine shape and motion from line correspondences with uncalibrated affine cameras. The algorithm requires a minimum of seven line correspondences over three views. The key idea is the introduction of a one-dimensional projective camera. This converts 3D affine reconstruction of "line directions" into 2D projective reconstruction of "points". In addition, a line-based factorization method is also proposed to handle redundant views. Experimental results both on simulated and real image sequences validate the robustness and the accuracy of the algorithm.

134 citations

Journal ArticleDOI
TL;DR: A regularized quadratic cost function is formulated to restore artifact-free phase contrast images that directly correspond to the specimen's optical path length, and it is demonstrated that accurate restoration lays the foundation for high performance in cell detection and tracking.

131 citations

01 Jan 1988
TL;DR: The development of a prototype modular manipulator is discussed and the implementation of a configuration independent manipulator kinematics algorithm used for path planning in the prototype is discussed.
Abstract: Modular manipulator designs have long been been considered for use as research tools, and as the basis for easily modified industrial manipulators. In these manipulators the links and joints are discrete and modular components that can be assembled into a desired manipulator configuration. As hardware advances have made actual modular manipulators practical, various capabilities of such manipulators have gained interest. Particularly desirable is the ability to rapidly reconfigure such a manipulator, in order to custom tailor it to specific tasks. This reconfiguration greatly enhances the capability of a given amount of manipulator hardware. This paper discusses the development of a prototype modular manipulator and the implementation of a configuration independent manipulator kinematics algorithm used for path planning in the prototype.

131 citations

Journal ArticleDOI
TL;DR: In this paper, a direct-drive arm is described, which is a mechanical arm in which the shafts of articulated joints are directly coupled to the rotors of motors with high torque.
Abstract: A direct-drive arm is a mechanical arm in which the shafts of articulated joints are directly coupled to the rotors of motors with high torque. Since the arm does not contain transmission mechanisms between the motors and their loads, the drive system has no backlash, small friction, and high mechanical stiffness, all of which are desirable for fast, accurate, and versatile robots. First, the prototype robot is described, and basic feedback compensation is discussed . This compensation significantly reduces the effect of interactions among multiple joints and nonlinear forces. The experiments showed the excellent performance of the direct-drive arm in terms of speed and accuracy.

131 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations