scispace - formally typeset
Search or ask a question
Author

Takeo Kanade

Bio: Takeo Kanade is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Motion estimation & Image processing. The author has an hindex of 147, co-authored 799 publications receiving 103237 citations. Previous affiliations of Takeo Kanade include National Institute of Advanced Industrial Science and Technology & Hitachi.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a set of color features, (R + G + B) 3, R − B, and (2G − R− B) 2, were derived by systematic experiments of region segmentation.

965 citations

Journal ArticleDOI
TL;DR: This paper presents a stereo matching algorithm using the dynamic programming technique that uses edge-delimited intervals as elements to be matched, and employs the above mentioned two searches: one is inter-scanline search for possible correspondences of connected edges in right and left images and the other is intra-scanlines search for correspondence of edge-Delimited interval on each scanline pair.
Abstract: This paper presents a stereo matching algorithm using the dynamic programming technique. The stereo matching problem, that is, obtaining a correspondence between right and left images, can be cast as a search problem. When a pair of stereo images is rectified, pairs of corresponding points can be searched for within the same scanlines. We call this search intra-scanline search. This intra-scanline search can be treated as the problem of finding a matching path on a two-dimensional (2D) search plane whose axes are the right and left scanlines. Vertically connected edges in the images provide consistency constraints across the 2D search planes. Inter-scanline search in a three-dimensional (3D) search space, which is a stack of the 2D search planes, is needed to utilize this constraint. Our stereo matching algorithm uses edge-delimited intervals as elements to be matched, and employs the above mentioned two searches: one is inter-scanline search for possible correspondences of connected edges in right and left images and the other is intra-scanline search for correspondences of edge-delimited intervals on each scanline pair. Dynamic programming is used for both searches which proceed simultaneously: the former supplies the consistency constraint to the latter while the latter supplies the matching score to the former. An interval-based similarity metric is used to compute the score. The algorithm has been tested with different types of images including urban aerial images, synthesized images, and block scenes, and its computational requirement has been discussed.

913 citations

01 Mar 1992
TL;DR: In this article, the singular value decomposition (SVDC) is used to factor the measurement matrix into two matrices, which represent object shape and camera motion, respectively.
Abstract: Inferring scene geometry and camera motion from a stream of images is possible in principle, but it is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion without computing depth as an intermediate step. An image stream can be represented by the 2F x P measurement matrix of the image coordinates of P points tracked through F frames. Under orthographic projection this matrix is of rank 3. Using this observation, the factorization method uses the singular value decomposition technique to factor the measurement matrix into two matrices, which represent object shape and camera motion, respectively. The method can also handle and obtain a full solution from a partially filled-in measurement matrix, which occurs when features appear and disappear in the image sequence due to occlusions or tracking failures. The method gives accurate results and does not introduce smoothing in either shape or motion. We demonstrate this with a series of experiments on laboratory and outdoor image streams, with and without occlusions.

871 citations

Journal ArticleDOI
TL;DR: A new, pixel-based (iconic) algorithm that estimates depth and depth uncertainty at each pixel and incrementally refines these estimates over time and can serve as a useful and general framework for low-level dynamic vision.
Abstract: Using known camera motion to estimate depth from image sequences is an important problem in robot vision. Many applications of depth-from-motion, including navigation and manipulation, require algorithms that can estimate depth in an on-line, incremental fashion. This requires a representation that records the uncertainty in depth estimates and a mechanism that integrates new measurements with existing depth estimates to reduce the uncertainty over time. Kalman filtering provides this mechanism. Previous applications of Kalman filtering to depth-from-motion have been limited to estimating depth at the location of a sparse set of features. In this paper, we introduce a new, pixel-based (iconic) algorithm that estimates depth and depth uncertainty at each pixel and incrementally refines these estimates over time. We describe the algorithm and contrast its formulation and performance to that of a feature-based Kalman filtering algorithm. We compare the performance of the two approaches by analyzing their theoretical convergence rates, by conducting quantitative experiments with images of a flat poster, and by conducting qualitative experiments with images of a realistic outdoor-scene model. The results show that the new method is an effective way to extract depth from lateral camera translations. This approach can be extended to incorporate general motion and to integrate other sources of information, such as stereo. The algorithms we have developed, which combine Kalman filtering with iconic descriptions of depth, therefore can serve as a useful and general framework for low-level dynamic vision.

780 citations

Journal ArticleDOI
TL;DR: A distributed architecture articulated around the CODGER (communication database with geometric reasoning) knowledge database is described for a mobile robot system that includes both perception and navigation tools.
Abstract: A distributed architecture articulated around the CODGER (communication database with geometric reasoning) knowledge database is described for a mobile robot system that includes both perception and navigation tools. Results are described for vision and navigation tests using a mobile testbed that integrates perception and navigation capabilities that are based on two types of vision algorithms: color vision for road following, and 3-D vision for obstacle detection and avoidance. The perception modules are integrated into a system that allows the vehicle to drive continuously in an actual outdoor environment. The resulting system is able to navigate continuously on roads while avoiding obstacles. >

780 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

21,729 citations