scispace - formally typeset
Search or ask a question
Author

Takeshi Nakayama

Bio: Takeshi Nakayama is an academic researcher from University of Tsukuba. The author has contributed to research in topics: Nephroselmis & Polyphyly. The author has an hindex of 22, co-authored 50 publications receiving 1324 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The 185rDNA trees clearly demonstrate the non‐monophyly of the Chlamydomonadales and Chlorococcales, suggesting that vegetative morphology does not reflect phylogenetic relationships in the CW group.
Abstract: SUMMARY Nuclear-encoded small subunit ribosomal RNA gene (185rDNA) sequences were determined for Chlamydomonas moewusii Gerloff and five chlorococcalean algae (Chlorococcum hypnosporum Starr; Chlorococcum oleofaciens Trainor et Bold; Chlorococcum sp.; Tetracystis aeria Brown et Bold; Protosiphon botryoides (Kutzingl Klebs). All these algae are characterized by a clockwise CCW) flagellar apparatus. Phylogenetic trees were constructed from sequences from these algae together with 20 green algae. All algae with a CW flagellar apparatus form a monophyletic clade (CW group). Three principal clades can be recognized in the CW group, although no morphological character supports monophyly of any of these three clades. The 185rDNA trees clearly demonstrate the non-monophyly of the Chlamydomonadales and Chlorococcales, suggesting that vegetative morphology does not reflect phylogenetic relationships in the CW group. The paraphyly or polyphyly of the genus Chlamydomonas and Chlorococcum are also revealed. Present analysis suggests that the presence or absence of a zoospore's cell wall and the multinucleate condition have limited taxonomic values at higher taxonomic ranks.

205 citations

Journal ArticleDOI
01 Dec 1998-Protist
TL;DR: These analyses provide further evidence for the basal phylogenetic position of the scaly green flagellates among the Chlorophyta and raise important questions concerning the class-level classification of the Ch chlorophyta.

141 citations

Journal ArticleDOI
TL;DR: A novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation, providing an important strategy for decreasing radiopollution in Fukushima area.
Abstract: The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 1017 Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

79 citations

Journal ArticleDOI
01 Jun 2002-Protist
TL;DR: The results indicated that the loss of photosynthetic ability occurred independently in P. danica and C. infusionum, the first report of the presence of a vestigial chloroplast (leucoplast) in colorless dictyochophytes.

67 citations

Journal ArticleDOI
01 Apr 2011-Protist
TL;DR: It is proposed that Lepidodiniumplastids are of core chlorophyte origin, and 85 sequences newly determined in this study and recent progress in plastid genome sequencing enabled us to prepare an alignment comprised of 11Plastid proteins from green algal taxa that appropriately cover the diversity of Chlorophyta.

58 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: This revision of the classification of eukaryotes retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees.
Abstract: This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.

1,414 citations

Journal ArticleDOI
TL;DR: It is confirmed that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista, and suggested primer sets for DNA sequences from environmental samples that are effective for each clade are provided.
Abstract: This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many ...

750 citations

Journal ArticleDOI
TL;DR: Current understanding of organelle genome evolution in the green algae is summarized, genomic insights into the ecology of oceanic picoplanktonic prasinophytes, molecular mechanisms underlying the evolution of complexity in volvocine green algae, and the Evolution of genetic codes and the translational apparatus in green seaweeds are summarized.
Abstract: The green lineage (Viridiplantae) comprises the green algae and their descendants the land plants, and is one of the major groups of oxygenic photosynthetic eukaryotes. Current hypotheses posit the early divergence of two discrete clades from an ancestral green flagellate. One clade, the Chlorophyta, comprises the early diverging prasinophytes, which gave rise to the core chlorophytes. The other clade, the Streptophyta, includes the charophyte green algae from which the land plants evolved. Multi-marker and genome scale phylogenetic studies have greatly improved our understanding of broad-scale relationships of the green lineage, yet many questions persist, including the branching orders of the prasinophyte lineages, the relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), and the relationships among the streptophytes. Current phylogenetic hypotheses provide an evolutionary framework for molecular evolutionary studies and comparative genomics. This review summarizes our current understanding of organelle genome evolution in the green algae, genomic insights into the ecology of oceanic picoplanktonic prasinophytes, molecular mechanisms underlying the evolution of complexity in volvocine green algae, and the evolution of genetic codes and the translational apparatus in green seaweeds. Finally, we discuss molecular evolution in the streptophyte lineage, emphasizing the genetic facilitation of land plant origins.

727 citations

Journal ArticleDOI
TL;DR: A recent multigene analysis corroborates a close relationship between Mesostigma (formerly in the Prasinophyceae) and the charophyte algae, although sequence data of the Mesost Sigma mitochondrial genome analysis places the genus as sister toCharales, and these studies also support Charales as Sister to land plants.
Abstract: Over the past two decades, molecular phylogenetic data have allowed evaluations of hypotheses on the evolution of green algae based on vegetative morphological and ultrastructural characters. Higher taxa are now generally recognized on the basis of ultrastructural characters. Molecular analyses have mostly employed primarily nuclear small subunit rDNA (18S) and plastid rbcL data, as well as data on intron gain, complete genome sequencing, and mitochondrial sequences. Molecular-based revisions of classification at nearly all levels have occurred, from dismemberment of long-established genera and families into multiple classes, to the circumscription of two major lineages within the green algae. One lineage, the chlorophyte algae or Chlorophyta sensu stricto, comprises most of what are commonly called green algae and includes most members of the grade of putatively ancestral scaly flagellates in Prasinophyceae plus members of Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The other lineage (charophyte algae and embryophyte land plants), comprises at least five monophyletic groups of green algae, plus embryophytes. A recent multigene analysis corroborates a close relationship between Mesostigma (formerly in the Prasinophyceae) and the charophyte algae, although sequence data of the Mesostigma mitochondrial genome analysis places the genus as sister to charophyte and chlorophyte algae. These studies also support Charales as sister to land plants. The reorganization of taxa stimulated by molecular analyses is expected to continue as more data accumulate and new taxa and habitats are sampled. Twenty years ago, a relatively slim volume with chapters by leading chlorophycologists celebrated the systematics of green algae (Irvine and John, 1984), a field that was undergoing rapid and fascinating changes, both in content and theory. ‘‘The present period may be termed the ‘Age of Ultrastructure’ in green algal systematics,’’ wrote Frank Round (1984, p. 7) in the introductory chapter, which summarized the history and state of the art. Round (1984) argued that light microscopy had laid the foundation in the preceding two centuries, but that the foundation was largely descriptive—alpha taxonomy in the most restricted sense. Ultrastructure, he asserted, had enlarged and presumably would continue to expand our horizons to unify systematics of green algae and overcome the fragmented alpha taxonomy that had dominated the field. Little did Round know that this golden age of green algal systematics was about to go platinum. Molecular systematics, in concert with a rigorous theoretical approach to data analysis and hypothesis testing (Theriot, 1992; Swofford et al., 1996), would at first complement and then transform the age of ultrastructure and usher in the ‘‘Age of Molecules.’’ In this article, we review the major advances in green algal systematics in the past 20 years, with a focus on well-supported, monophyletic taxa and the larger picture of phylogeny and evolution of green algae. We will review the types of data that have fueled these advances. As will become obvious, this perspective entails discussion of some embryophytes as well as their closest green algal relatives. In addition, we will point

693 citations