scispace - formally typeset
Search or ask a question
Author

Takeshi Saito

Bio: Takeshi Saito is an academic researcher from National Institute of Advanced Industrial Science and Technology. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 35, co-authored 225 publications receiving 4796 citations. Previous affiliations of Takeshi Saito include Tokyo Electron & National Presto Industries.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, single-wall carbon nanotubes (SWCNTs) were highly aligned by an external electric field and the results suggest that the alignment of SWCNT shows significant dependencies on the frequency and the magnitude of the applied electric field.
Abstract: Single-wall carbon nanotubes (SWCNTs) were highly aligned by an external electric field. The results suggest that the alignment of SWCNTs shows significant dependencies on the frequency and the magnitude of the applied electric field. The electric field with 5 MHz straightened out the SWCNTs and created highly oriented samples with fewer large particles. We also discussed the mechanism and applications.

495 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that raw multi-walled carbon nanotubes (MWCNTs) can be cut into several hundred nanometer lengths by sonication in mixed acids and the resulting shortened MWCNTs formed a stable dispersion state in the polar solvent without the help of surfactants.
Abstract: It is shown that raw multi-walled carbon nanotubes (MWCNTs) can be cut into several hundred nanometer lengths by sonication in mixed acids. The resulting shortened MWCNTs formed a stable dispersion state in the polar solvent without the help of surfactants. Toward chemical modification of MWCNTs, the condensation reaction of the shortened MWCNTs and various alkyldiamines was carried out and the products were investigated by the Fourier transform infrared (FT-IR) spectroscopy and the scanning electron microscope (SEM) measurements.

283 citations

Journal ArticleDOI
TL;DR: Proteins were screened by preparing dispersions of SWNTs to investigate the driving force of the interaction between single-walled carbon nanotubes (SWNTs) of mean diameter 1 nm and water-soluble proteins, and far-UV circular dichroism spectra indicated that the LYS and BSA molecules that coat SWNT surfaces were partially denatured.

214 citations

Journal ArticleDOI
TL;DR: The controlling the flow rate of the ethylene used as a 2nd carbon source can selectively tune the diameter distribution of SWNTs in the gas-phase growth of single-walled carbon nanotubes.
Abstract: A novel approach for selective diameter control of single-walled carbon nanotubes (SWNTs) is performed in the gas-phase growth using two kinds of carbon sources with different decomposition properties; the one carbon source (1st carbon source) is the organic solvent which is difficult to decompose in the reactor and the another carbon source (2nd carbon source) is facile to decompose. The diameter distributions of SWNTs synthesized with various conditions of the flow rate of the 2nd carbon source were investigated by resonant Raman scattering, optical absorption, and photoluminescence (PL) mapping measurements. It was found that increasing the flow rate of the ethylene tends to decrease the diameter of synthesized SWNTs, probably due to the earlier nucleation of SWNTs induced by the ethylene addition. The controlling the flow rate of the ethylene used as a 2nd carbon source can selectively tune the diameter distribution of SWNTs in our growth system.

198 citations

Journal ArticleDOI
TL;DR: In this paper, a field effect transistors (FET) consisting of semiconducting single wall carbon nanotubes (s-SWNTs) without detectable traces of metallic nanotsubes and impurities is reported.
Abstract: Substantial progress on field effect transistors (FETs) consisting of semiconducting single wall carbon nanotubes (s-SWNTs) without detectable traces of metallic nanotubes and impurities is reported. Nearly perfect removal of metallic nanotubes is confirmed by optical absorption, Raman measurements, and electrical measurements. This outstanding result was made possible in particular by ultracentrifugation (150000g) of solutions prepared from SWNT powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs processable solutions were applied to realize FET, embodying randomly or preferentially oriented nanotube networks prepared by spin coating or dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air with very promising characteristics. The on-off current ratio is 105, the on-current level is around 10μA, and the estimated hole mobility is larger than 2cm2∕Vs.

145 citations


Cited by
More filters
Journal ArticleDOI
16 Apr 2009-Nature
TL;DR: A simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls is described.
Abstract: Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required.

3,279 citations

Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Journal ArticleDOI
TL;DR: This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.
Abstract: Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

1,681 citations

Journal ArticleDOI
18 Jul 2003-Science
TL;DR: This work has developed a method to separate metallic from semiconducting single-walled carbon nanotubes from suspension using alternating current dielectrophoresis, taking advantage of the difference of the relative dielectric constants of the two species with respect to the solvent.
Abstract: We have developed a method to separate metallic from semiconducting single-walled carbon nanotubes from suspension using alternating current dielectrophoresis. Our method takes advantage of the difference of the relative dielectric constants of the two species with respect to the solvent, resulting in an opposite movement of metallic and semiconducting tubes along the electric field gradient. Metallic tubes are attracted toward a microelectrode array, leaving semiconducting tubes in the solvent. Proof of the effectiveness of separation is given by a comparative Raman spectroscopy study on the dielectrophoretically deposited tubes and on a reference sample.

1,592 citations