scispace - formally typeset
Search or ask a question
Author

Tal Capucha

Bio: Tal Capucha is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Population & Medicine. The author has an hindex of 10, co-authored 23 publications receiving 338 citations. Previous affiliations of Tal Capucha include Rambam Health Care Campus & Technion – Israel Institute of Technology.

Papers
More filters
Journal ArticleDOI
18 Aug 2015-Immunity
TL;DR: Findings strongly suggest that oral mucosal LCs are genuine LCs, which differentiate from at least three distinct precursors (embryonic, pre-DC, and monocytic) in steady state in tissue-dependent manner.

67 citations

Journal ArticleDOI
TL;DR: GAS6 is proposed as a key immunological regulator of host–commensal interactions in the oral epithelium to maintain coexistence with favorable microorganisms residing within the oral cavity.
Abstract: The oral epithelium contributes to innate immunity and oral mucosal homeostasis, which is critical for preventing local inflammation and the associated adverse systemic conditions. Nevertheless, the mechanisms by which the oral epithelium maintains homeostasis are poorly understood. Here, we studied the role of growth arrest specific 6 (GAS6), a ligand of the TYRO3–AXL–MERTK (TAM) receptor family, in regulating oral mucosal homeostasis. Expression of GAS6 was restricted to the outer layers of the oral epithelium. In contrast to protein S, the other TAM ligand, which was constitutively expressed postnatally, expression of GAS6 initiated only 3–4 wk after birth. Further analysis revealed that GAS6 expression was induced by the oral microbiota in a myeloid differentiation primary response gene 88 (MyD88)-dependent fashion. Mice lacking GAS6 presented higher levels of inflammatory cytokines, elevated frequencies of neutrophils, and up-regulated activity of enzymes, generating reactive nitrogen species. We also found an imbalance in Th17/Treg ratio known to control tissue homeostasis, as Gas6-deficient dendritic cells preferentially secreted IL-6 and induced Th17 cells. As a result of this immunological shift, a significant microbial dysbiosis was observed in Gas6−/− mice, because anaerobic bacteria largely expanded by using inflammatory byproducts for anaerobic respiration. Using chimeric mice, we found a critical role for GAS6 in epithelial cells in maintaining oral homeostasis, whereas its absence in hematopoietic cells synergized the level of dysbiosis. We thus propose GAS6 as a key immunological regulator of host–commensal interactions in the oral epithelium.

53 citations

Journal ArticleDOI
TL;DR: An overview of the various gingival dendritic cell subsets and their distribution is provided, while focusing on their role in periodontal bone loss.
Abstract: T cells, particularly CD4+ T cells, play a central role in both progression and control of periodontal disease, whereas the contribution of the various CD4+ T helper subsets to periodontal destruction remains controversial, the activation, and regulation of these cells is orchestrated by dendritic cells. As sentinels of the oral mucosa, dendritic cells encounter and capture oral microbes, then migrate to the lymph node where they regulate the differentiation of CD4+ T cells. It is thus clear that dendritic cells are of major importance in the course of periodontitis, as they hold the immunological cues delivered by the pathogen and the surrounding environment, allowing them to induce destructive immunity. In recent years, advanced immunological techniques and new mouse models have facilitated in vivo studies that have provided new insights into the developmental and functional aspects of dendritic cells. This progress has also benefited the characterization of oral dendritic cells, as well as to their function in periodontitis. Here, we provide an overview of the various gingival dendritic cell subsets and their distribution, while focusing on their role in periodontal bone loss.

49 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the differentiation of murine mucosal LCs is a two-step process, and the differential and sequential role of TGF-&bgr;1 and BMP7 in LC differentiation is revealed and the intimate interplay of LCs with the microbiota is highlighted.
Abstract: Mucosal Langerhans cells (LCs) originate from pre-dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process. In the lamina propria, signaling via BMP7-ALK3 promotes translocation of LC precursors to the epithelium. Within the epithelium, TGF-β1 finalizes LC differentiation, and ALK5 is crucial to this process. Moreover, the local microbiota has a major impact on the development of mucosal LCs, whereas LCs in turn maintain mucosal homeostasis and prevent tissue destruction. These results reveal the differential and sequential role of TGF-β1 and BMP7 in LC differentiation and highlight the intimate interplay of LCs with the microbiota.

39 citations

Posted ContentDOI
07 May 2020-medRxiv
TL;DR: This work developed a protocol based on Reverse Transcribed Loop-Mediated Isothermal Amplification (RT-LAMP) for detection of SARS-CoV-2, directly from crude nose and throat swabs, and succeeded to apply the protocol on self-sampled saliva from confirmed cases.
Abstract: Many countries are currently in a lockdown state due to the SARS-CoV-2 pandemic. One key aspect to transition safely out of lockdown is to continuously test the population for infected subjects. Currently, detection is performed at points of care using quantitative reverse-transcription PCR (RT-qPCR), and requires dedicated professionals and equipment. Here, we developed a protocol based on Reverse Transcribed Loop-Mediated Isothermal Amplification (RT-LAMP) for detection of SARS-CoV-2. This protocol is applied directly on SARS-CoV-2 nose and throat swabs, with no RNA purification step required. We tested this protocol on over 180 suspected patients, and compared its results to the standard method. We further succeeded to apply the protocol on self-sampled saliva from confirmed cases. Since the proposed protocol provides results on-the-spot, and can detect SARS-CoV-2 from saliva, it can allow simple and continuous surveillance of the community.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced the understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases are discussed.
Abstract: The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.

938 citations

Journal ArticleDOI
TL;DR: Advances in resolution of phenotype and gene expression facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Abstract: Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.

758 citations

Journal ArticleDOI
TL;DR: Periodontitis is an infection-driven inflammatory disease in which the composition of biofilms plays a significant role and characteristically results in irreversible loss of attachment and alveolar bone.
Abstract: Periodontitis is an infection-driven inflammatory disease in which the composition of biofilms plays a significant role. Dental plaque accumulation at the gingival margin initiates an inflammatory response that, in turn, causes microbial alterations and may lead to drastic consequences in the periodontium of susceptible individuals. Chronic inflammation affects the gingiva and can proceed to periodontitis, which characteristically results in irreversible loss of attachment and alveolar bone. Periodontitis appears typically in adult-aged populations, but young individuals can also experience it and its harmful outcome. Advanced disease is the major cause of tooth loss in adults. In addition, periodontitis is associated with many chronic diseases and conditions affecting general health.

326 citations

Journal ArticleDOI
TL;DR: It is argued that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment.
Abstract: Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.

307 citations