scispace - formally typeset
Search or ask a question
Author

Tale Saeidi

Other affiliations: Petronas
Bio: Tale Saeidi is an academic researcher from Universiti Teknologi Petronas. The author has contributed to research in topics: Antenna (radio) & Antenna efficiency. The author has an hindex of 6, co-authored 30 publications receiving 112 citations. Previous affiliations of Tale Saeidi include Petronas.

Papers
More filters
Journal ArticleDOI
TL;DR: A review paper concerning wide-band and ultra-wideband (UWB) antennas used for wireless communication purposes in terms of the materials as well as a numerical analysis is presented.
Abstract: A review paper concerning wide-band and ultra-wideband (UWB) antennas used for wireless communication purposes in terms of the materials as well as a numerical analysis is presented. These antennas which are taken into account are listed as wide-band microstrip antenna, wide-band monopole antenna over a plate, wide-slot UWB antenna, stacked patch UWB antenna, taper slot (TSA) UWB antenna, metamaterial (MTM) structure UWB antennas, elliptical printed monopole UWB antenna, and flexible wearable UWB antenna. The antennas’ performance is compared based on their size and how they can be applicable for portable communication device applications. This review paper furnishes a proper direction to select varieties of figures in terms of impedance bandwidth, gain, directivity, dimensions, time domain characteristics, and materials affecting these antenna’s characteristics.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the numerous problems and obstacles in the production of wearable antennas, their variety of materials, and the techniques of manufacturing alongside with bending scheme, and provide a summary of creative features and their respective approaches to address these problems.
Abstract: Wearable antennas have received a great deal of popularity in recent years owing to their enticing characteristics and opportunities to realize lightweight, compact, low-cost, and versatile wireless communications and environments. These antennas must be conformal, and they must be built using lightweight materials and constructed in a low-profile configuration when mounted on various areas of the human body. These antennas ought to be able to function close to the human body with limited deterioration. These criteria render the layout of wearable antennas demanding, particularly when considering factors such as investigating the usability of textile substrates, high conductive materials during fabrication processes, and the effect of body binding scenarios on the performance of the design. Although there are minor differences in magnitude based on the implementations, several of these problems occur in the body-worn deployment sense. This study addresses the numerous problems and obstacles in the production of wearable antennas, their variety of materials, and the techniques of manufacturing alongside with bending scheme. This is accompanied by a summary of creative features and their respective approaches to address these problems recently raised by work in this area by the science community. © 2020. All Rights Reserved.

41 citations

Journal ArticleDOI
TL;DR: In this article, a full ground ultra wideband (UWB) antenna is proposed and utilized to attain a broad bandwidth while keeping specific absorption rate (SAR) in the acceptable range based on both 1 g and 10 g standards.
Abstract: Wireless body area network (WBAN) applications have broad utility in monitoring patient health and transmitting the data wirelessly. WBAN can greatly benefit from wearable antennas. Wearable antennas provide comfort and continuity of the monitoring of the patient. Therefore, they must be comfortable, flexible, and operate without excessive degradation near the body. Most wearable antennas use a truncated ground, which increases specific absorption rate (SAR) undesirably. A full ground ultra-wideband (UWB) antenna is proposed and utilized here to attain a broad bandwidth while keeping SAR in the acceptable range based on both 1 g and 10 g standards. It is designed on a denim substrate with a dielectric constant of 1.4 and thickness of 0.7 mm alongside the ShieldIt conductive textile. The antenna is fed using a ground coplanar waveguide (GCPW) through a substrate-integrated waveguide (SIW) transition. This transition creates a perfect match while reducing SAR. In addition, the proposed antenna has a bandwidth (BW) of 7-28 GHz, maximum directive gain of 10.5 dBi and maximum radiation efficiency of 96%, with small dimensions of 60 × 50 × 0.7 mm3. The good antenna's performance while it is placed on the breast shows that it is a good candidate for both breast cancer imaging and WBAN.

41 citations

Journal ArticleDOI
TL;DR: In this article, a metamaterial-based flexible wearable ultra-wideband (UWB) antenna for breast imaging and wireless body area network (WBAN) applications is presented.
Abstract: This paper presents a metamaterial-based flexible wearable ultra-wideband (UWB) antenna for breast imaging and wireless body area network (WBAN) applications. The wearable antenna is required to be a planar and low-profile structure using flexible materials. The proposed antenna comprises two layers of denim (10 × 10 mm2) and felt (10 × 15 mm2). The antenna was integrated with six metamaterial unit cells using a modified grain rice shape within a split ring resonator to enhance the bandwidth, gain, and directivity and reduce the specific absorption rate value to less than 2 W/kg. The proposed antenna operates within a broad bandwidth range (6.5 GHz–35 GHz) with the maximum gain and directivity of 8.85 dBi and 10 dBi, respectively, and a radiation efficiency of more than 70% over its operating frequency band. The results verified good agreement between the simulation and measurement of the proposed technique in detecting an existing tumor with a diameter of 4 mm from any location inside the breast. The results convincingly proved the capability of the proposed wearable UWB antenna system for both WBAN and breast imaging applications.

22 citations

Journal ArticleDOI
TL;DR: In this article, a droplet shape ultra-wide band antenna for imaging of wood was proposed, which is designed on PTFE substrate with a dielectric constant of 2.55, loss tangent of 0.001-and 2.4-mm thickness.
Abstract: This article presents the design of a droplet shape ultra-wide band antenna for imaging of wood. The proposed antenna is designed on PTFE substrate with a dielectric constant of 2.55, loss tangent of 0.001- and 2.4-mm thickness. The antenna is loaded by a stub to resonate at lower band frequency, strip loading at the back, and a chamfered ground to increase the bandwidth. Despite having miniaturized dimensions of 15 mm × 15 mm, it shows better results compared to recent studies. The simulation results depict a good ultra-wide bandwidth from 3.26 GHz to 20 GHz, and 21.5–25 GHz; Besides, the proposed antenna has two bands at 1.25–1.35 GHz and 1.7–1.81 GHz. In addition to that, the antenna achieved a maximum gain of 5.69 dB and directivity of 7.3 dBi. The measurement results of S-parameters transmitted and received signals performed in air, plywood, and high-density wood show a good agreement with the simulated results. In addition, the measured results illustrate a good isolation and uniform illumination among arrays as well as the received signals’ shapes do not change in different environments, but only the amplitude. Hence, the proposed antenna seems to be adequate for microwave imaging of wood.

16 citations


Cited by
More filters
01 Jan 2016

733 citations

Journal ArticleDOI
TL;DR: The need for flexible antennas, materials, and processes used for fabricating the antennas, various material properties influencing antenna performance, and specific biomedical applications accompanied by the design considerations are focused on.
Abstract: The field of flexible antennas is witnessing an exponential growth due to the demand for wearable devices, Internet of Things (IoT) framework, point of care devices, personalized medicine platform, 5G technology, wireless sensor networks, and communication devices with a smaller form factor to name a few. The choice of non-rigid antennas is application specific and depends on the type of substrate, materials used, processing techniques, antenna performance, and the surrounding environment. There are numerous design innovations, new materials and material properties, intriguing fabrication methods, and niche applications. This review article focuses on the need for flexible antennas, materials, and processes used for fabricating the antennas, various material properties influencing antenna performance, and specific biomedical applications accompanied by the design considerations. After a comprehensive treatment of the above-mentioned topics, the article will focus on inherent challenges and future prospects of flexible antennas. Finally, an insight into the application of flexible antenna on future wireless solutions is discussed.

101 citations

Journal Article
TL;DR: In this paper, the simulation results of a rectangular microstrip patch antenna at terahertz (THz) frequency ranging from 0.7 to 0.85 THz were presented.
Abstract: In this paper, we have presented the simulation results of a rectangular microstrip patch antenna at terahertz (THz) frequency ranging from 0.7 to 0.85 THz. THz electromagnetic wave can permit more densely packed communication links with increased security of communication transmission. The simulated results such as gain, radiation efficiency and 10 dB impedance bandwidth of rectangular microstrip patch antenna at THz frequencies without shorting post configuration are 3.497 dB, 55.71% and 17.76%, respectively, whereas with shorting post configuration, corresponding parameters are 3.502 dB, 55.88% and 17.27%. The simulation has been performed by using CST Microwave Studio, which is a commercially available electromagnetic simulator based on the method of finite difference time domain technique.

99 citations